

Lecture Notes in Computer Science 3267
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Corrado Priami Paola Quaglia (Eds.)

Global
Computing

IST/FET International Workshop, GC 2004
Rovereto, Italy, March 9-12, 2004
Revised Selected Papers

13

Volume Editors

Corrado Priami
Paola Quaglia
Dip. Informatica e Telecomunicazioni, Univ. Trento
Via Sommarive 14, 38050 Povo (TN), Italy
E-mail: {priami, quaglia}@dit.unitn.it

Library of Congress Control Number: Applied for

CR Subject Classification (1998): C.2.4, D.1.3, D.2, D.4.6, F.2.1-2, I.2.11, D.3, F.3

ISSN 0302-9743
ISBN 3-540-24101-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11353478 06/3142 5 4 3 2 1 0

Preface

This volume collects revised versions of some of the papers presented at the Sec-
ond IST/FET International Workshop on Global Computing held in Rovereto,
Italy (9–12 March, 2004).

The workshop involved all the thirteen projects funded under the IST/FET
proactive initiative on GLOBAL COMPUTING: AGILE; CRESCCO; DART;
DBGLOBE; DEGAS; FLAGS; MIKADO; MRG; MYTHS; PEPITO; PROFUN-
DIS; SECURE; SOCS.

The first aim of the GLOBAL COMPUTING initiative is the development of
paradigms for building flexible, dependable, secure, robust and efficient systems.
Primary research concerns are the co-ordination, interaction, security, reliability,
robustness, and risk control of the entities in the global system. The ultimate
goal of the research action is to provide a solid scientific foundation for the design
of such systems, and to lay the groundwork for achieving effective principles for
building and analysing them.

The workshop covered topics related to programming environments, dynamic
reconfiguration, resource guarantees, peer-to-peer networks, analysis of systems
and resources, resource sharing, and security, as well as foundational calculi for
mobility. The present collection offers a rich sample of research results on the
above subjects.

We acknowledge the Dipartimento di Informatica e Telecomunicazioni of the
University of Trento for partially funding the workshop, and the Events and
Meetings Office of the University of Trento for the valuable collaboration.

Trento
27 July 2004 Corrado Priami and Paola Quaglia

Table of Contents

Symbolic Equivalences for Open Systems
Paolo Baldan, Andrea Bracciali, Roberto Bruni . 1

Specifying and Verifying UML Activity Diagrams Via Graph
Transformation

Paolo Baldan, Andrea Corradini, Fabio Gadducci 18

Mobile UML Statecharts with Localities
Diego Latella, Mieke Massink, Hubert Baumeister, Martin Wirsing . . . 34

Communities: Concept-Based Querying for Mobile Services
Chara Skouteli, Christoforos Panayiotou, George Samaras,
Evaggelia Pitoura . 59

Towards a Formal Treatment of Secrecy Against Computational
Adversaries

Angelo Troina, Alessandro Aldini, Roberto Gorrieri 77

For-LySa: UML for Authentication Analysis
Mikael Buchholtz, Carlo Montangero, Lara Perrone, Simone Semprini 93

Performance Analysis of a UML Micro-business Case Study
Katerina Pokozy-Korenblat, Corrado Priami, Paola Quaglia 107

Efficient Information Propagation Algorithms in Smart Dust and
NanoPeer Networks

Sotiris Nikoletseas, Paul Spirakis . 127

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi
Alan Schmitt, Jean-Bernard Stefani . 146

A Software Framework for Rapid Prototyping of Run-Time Systems for
Mobile Calculi

Lorenzo Bettini, Rocco De Nicola, Daniele Falassi, Marc Lacoste,
Lúıs Lopes, Lićınio Oliveira, Hervé Paulino, Vasco T. Vasconcelos . . . 179

A Generic Membrane Model (Note)
Gérard Boudol . 208

A Framework for Structured Peer-to-Peer Overlay Networks
Luc Onana Alima, Ali Ghodsi, Seif Haridi . 223

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case
Johannes Borgström, Uwe Nestmann, Luc Onana, Dilian Gurov 250

A Physics-Style Approach to Scalability of Distributed Systems
Erik Aurell, Sameh El-Ansary . 266

Table of ContentsVII

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast
M. Brahami, P. Th. Eugster, R. Guerraoui, S. B. Handurukande 273

Trust Lifecycle Management in a Global Computing Environment
S. Terzis, W. Wagealla, C. English, P. Nixon . 291

The SOCS Computational Logic Approach to the Specification and
Verification of Agent Societies

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, Paolo Torroni . 314

The KGP Model of Agency for Global Computing: Computational
Model and Prototype Implementation

A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu,
P. Mancarella, F. Sadri, K. Stathis, G. Terreni, F. Toni 340

Author Index . 369

I

Symbolic Equivalences for Open Systems�

Paolo Baldan1, Andrea Bracciali2, and Roberto Bruni2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italia
2 Dipartimento di Informatica, Università di Pisa, Italia
baldan@dsi.unive.it, {braccia, bruni}@di.unipi.it

Abstract. Behavioural equivalences on open systems are usually de-
fined by comparing system behaviour in all environments. Due to this
“universal” quantification over the possible hosting environments, such
equivalences are often difficult to check in a direct way. Here, working
in the setting of process calculi, we introduce a hierarchy of behavioural
equivalences for open systems, building on a previously defined symbolic
approach. The hierarchy comprises both branching, bisimulation-based,
and non-branching, trace-based, equivalences. Symbolic equivalences are
amenable to effective analysis techniques (e.g., the symbolic transition
system is finitely branching under mild assumptions), which result to be
sound, but often not complete due to redundant information. Two kinds
of redundancy, syntactic and semantic, are discussed and and one class of
symbolic equivalences is identified that deals satisfactorily with syntactic
redundant transitions, which are a primary source of incompleteness.

1 Introduction

The widespread diffusion of web applications and mobile devices has shifted
the attention to open systems, i.e., systems where mobile software components
can be dynamically connected to interact with each other. As a consequence,
language-independent frameworks to reason about open systems and software
architectures for coordination have gained interest. In the literature, process
calculi (pc) have been devised as a useful paradigm for the specification and
analysis of open systems. Situated between real programming languages and
mere mathematical abstractions, they facilitate rigorous system analysis, offering
the basis for prototypical implementation and for verification tools. Indeed, many
running implementations exist of languages based on calculi originally proposed
to experiment basic interaction primitives [29, 33, 16, 11].

The operational and abstract semantics of pc, as well as algorithms for ver-
ification, are often naturally defined for components, i.e. closed terms of the
calculus, via a labelled transition system (lts). The extension to coordinators,
i.e. contexts with holes representing the openness of the system, can require

� Research supported by the Projects IST-2001-32747 Agile, IST-2001-32617 Myths
and IST-2001-32530 Socs.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 1–17, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 P. Baldan, A. Bracciali, and R. Bruni

non-trivial enhancements. Here, in the style, e.g., of the Security Process Alge-
bra (see [19] and references therein), we use process variables as place-holders for
unspecified components which may join the system, i.e., coordinators are viewed
as terms with process variables. A way to lift a semantic equivalence ≈ from
components to coordinators is to define C[X] ≈univ D[X] when C[p] ≈ D[p]
for all components p. This universal quantification can be recasted in a coalge-
braic framework by enriching the original transition system over components:
all coordinators C[X] are taken as states and a transition C[X]→pC[p] is added
for any component p. However the extended transition system is likely to be
intractable, being infinitely branching even for trivial calculi.

In [5], we introduced symbolic transition systems (stss) to ease the analy-
sis of coordinators’ properties. An sts is a transition system where states are
coordinators and transition labels are logic formulae expressing structural and
behavioural requirements on the unknown components which would allow the
transition to occur. Symbolic transition systems account for the operational se-
mantics of coordinators, and, based on this, two abstract semantics are defined:
strict bisimilarity ∼strict, a straight extension of the standard bisimilarity on la-
belled transition systems, and large bisimilarity �∼large, introduced as a mean to
solve, at least in part, the problem of redundant symbolic transitions (see below)
which may cause ∼strict to distinguish “too much”. For suitable stss (i.e., sound
and complete w.r.t. the original lts) both “symbolic” bisimilarities approximate
∼univ, the standard extension of bisimilarity ∼ to coordinators defined by uni-
versal quantification, as illustrated above. Moreover, sound and complete stss
can be automatically derived from sos specifications whenever the sos rules
satisfy rather general syntactic formats.

The first part of this paper consolidates and extends the theory of symbolic
bisimilarities. More specifically, we investigate some basic properties of ∼strict

and �∼large, showing, e.g., that the latter approximates ∼univ strictly better than
∼strict, although in general it is non-transitive (incidentally, the dot on top of ∼
in the symbol for large bisimilarity is a reminder of this fact). We discuss how
the defined equivalences are influenced by redundant symbolic specifications,
identifying two kinds of redundancy, called syntactic and semantic. While ∼strict

cannot overcome redundancy at all, �∼large can deal with significant forms of both
kinds of redundancy, but it does not fully solve any of the two. This motivates the
introduction of a novel bisimilarity �∼irred, called irredundant, which solves the
problem of syntactic redundancy. In general �∼large and �∼irred are not comparable
and a fourth, better approximation of ∼univ can be obtained by combining �∼large

and �∼irred, originating the “diamond” of bisimilarities in Fig. 1(a).
The second part of the paper fully generalises the sts approach to the setting

of trace semantics. Albeit trace semantics are usually easier to deal with, in the
case of coordinators the problem of universal closure w.r.t. all components still
persists and thus also trace equivalences benefit from a symbolic approach. To
every kind of symbolic bisimilarity described above, there corresponds a notion
of symbolic trace semantics. Each trace semantics is refined by the corresponding
bisimilarity, as expected, and all are correct approximations of the universal trace

Symbolic Equivalences for Open Systems 3

∼univ

(�∼large ∪ �∼irred)∗

��

�∼large

�������� �∼irred

��������

∼strict

���������
���������

(a) Diamond of bisimilarities.

�univ

��itight��

��ltight

������
�stight��

������

��irred

��		

��large

��

��

�strict��

������

��

∼univ

��

�∼irred

��

��

�∼large

��

������
∼strict

��

��

������

(b) Tower of symbolic semantics.

Fig. 1.

equivalence �univ. Finally, we introduce a compact form of trace, called tight,
which is exploited to improve the precision of all the approximations of �univ.
Though symbolic trace equivalences are the natural counterparts of symbolic
bisimilarities, the notion of tight trace is original and fully exploits the use of
formulae as transition labels. The full hierarchy of equivalences is in Fig. 1(b).

Synopsis. § 2 recalls the principles of stss from [5]. All material in § 3–5 is
original to this contribution. Relations between ∼strict and �∼large are investigated
in § 3, while § 4 discusses syntactic and semantic redundancy. § 5 provides
a symbolic approach to trace semantics. Technical results come together with
examples, based on calculi designed ad-hoc to clarify the features of interest.
Some concluding remarks and an account of related work are in § 6.

2 Approximating the Universal Bisimilarity

We restrict here to (non-empty) process calculi based on unsorted signatures.
Given a process signature Σ and a denumerable set of variables X (disjoint
from Σ), TΣ(X) denotes the term-algebra over Σ with variables in X . For
P ∈ TΣ(X), var(P) denotes the set of variables in P . If var(P) = ∅ then P
is closed. Closed terms form the set P of components p (possibly taken mod-
ulo a structural congruence ≡), while terms in TΣ(X) form the set C of coor-
dinators C. With C[X1, . . . , Xn] we mean that C is a coordinator such that
var(C) ⊆ {X1, . . . , Xn}. To simplify the notation hereafter we shall use single-
holed coordinators, i.e., coordinators with at most one variable, but all definitions
and results straightforwardly extend to many-holed coordinators.

The operational semantics of process calculi is given in terms of labelled tran-
sition systems (ltss). A transition from p to q with observable a ∈ Λ (the label
alphabet) is indicated as p→aq. Transitions are often specified by a collection
of inductive rules, following the sos paradigm [31]. Throughout the paper PC
denotes a fixed process calculus over a signature Σ, with an lts L specified by
a set of sos rules.

4 P. Baldan, A. Bracciali, and R. Bruni

A bisimulation is a symmetric relation ≈ over components such that if p ≈ q,
then for any transition p→ap

′ there exist a component q′ and a transition q→aq
′

with p′ ≈ q′. Bisimilarity ∼ is the largest bisimulation. The universal bisimilarity
∼univ is the lifting of ∼ to coordinators obtained by closing under all substitu-
tions, i.e. C[X] ∼univ D[X] def⇐⇒ ∀p ∈ P, C[p] ∼ D[p]. Since components are
closed, p ∼univ q iff p ∼ q.

Symbolic Bisimulation. The equivalence ∼univ can be quite intractable. To ad-
dress this problem we exploit a symbolic approach based on:
1. abstracting from components not playing an active role in the transition;
2. specifying the active components as little as possible;
3. making assumptions on the structure and behaviour of active components.

The idea is to derive from the lts a symbolic transition system (sts), where
states are coordinators and labels are formulae expressing behavioural and struc-
tural conditions required to unknown components for enabling the transition.

The logic LPC that we consider has modal and spatial operators in the style
of [8, 12]. It is worth observing that the word “spatial” has been used in the
literature to refer to the logical or physical distribution of system components,
e.g., prefix in ccs is generally not taken as a spatial operator. For the aim
of this paper, this word refers to the structure of a term and any operator of
the signature can be considered spatial. The syntax of LPC-formulae ϕ and the
associated notion of satisfaction are given below, where X ∈ X denotes a process
variable, f ∈ Σ is an operator in the process signature and a ∈ Λ an action label.

ϕ ::= X | f(ϕ, . . . , ϕ) | a. ϕ
p |= X
p |= f(ϕ1, . . . , ϕn) iff ∃p1, . . . , pn. p ≡ f(p1, . . . , pn) ∧ ∀i. pi |= ϕi

p |= a. ϕ iff ∃p′. p→ap
′ ∧ p′ |= ϕ

We denote by var(ϕ) the set of variables in a formula ϕ. We consider linear
formulae only (i.e. formulae where no variable occurs twice). A formula in LPC is
called spatial if it only contains variables and spatial operators f ∈ Σ (abusing
the notation, spatial expressions can be read both as formulae and as coordina-
tors). Each component p can be regarded as a spatial formula with no variables,
and p |= q iff p ≡ q.

For instance, the action prefix operator yields the spatial formula a.X, which
is satisfied by components of the shape p ≡ a.q. Although for specific calculi
the formulae a.X and a.X are satisfied exactly by the same set of components
(e.g. the formulae r.X and r.X in Example 1), we remark that their meaning
is quite different: the former imposes a spatial constraint, the latter imposes a
behavioural constraint, satisfied by components which can perform the action a
(e.g., the process (b.0 | a.0)\b in a ccs-like calculus).

Definition 1 (sts). A symbolic transition system (sts) S for PC is a set of
transitions C[X] {ϕ}

aD[Y] where C[X] and D[Y] are coordinators in PC, a ∈ Λ
and ϕ is a formula in LPC with var(ϕ) ⊇ var(D).

Symbolic Equivalences for Open Systems 5

The correspondence between the variable X in the source and its residual
Y in the target is expressed by the occurrence of Y in ϕ. For example, a sym-
bolic transition in a ccs-like calculus could be X\b {�a.Y }

aY \b for a �= b. The
modal formula a.Y is satisfied by any process p which can perform an action a
becoming a generic process, say q. Hence the symbolic transition represents the
infinitely many concrete transitions p\b→aq\b which are obtained by replacing
X and Y by such p and q, respectively.

To provide an adequate representation of the original transition system,
an sts is required to satisfy suitable correspondence properties. Informally,
C[X] {ϕ}

aD[Y] means that the coordinator C, instantiated with any com-
ponent p satisfying ϕ, i.e., p |= ϕ[q/Y], must be able to perform the action
a becoming an instance of D, namely D[q]. Also, any concrete transition on
components should have symbolic counterparts.

Definition 2 (Sound/Complete sts). An sts S for PC is:

– sound, if for any symbolic transition C[X] {ϕ}

aD[Y] in S and for any p, q

with p |= ϕ[q/Y], there exists a transition C[p]→aD[q] in the lts of PC.
– complete, if for any coordinator C[X], for any p and for any transition
C[p]→ar in PC there are q and C[X] {ϕ}

aD[Y] in S with p |= ϕ[q/Y] and
r ≡ D[q].

Observe that a weaker notion of completeness, simply asking that for any
p→aq there exist C[X] {ϕ}

aD[Y] and p′, q′ such that C[p′] ≡ p, D[q′] ≡ q and
p′ |= ϕ[q′/Y] would be inappropriate since a complete sts would not represent
the proper computational behaviour of coordinators. For instance, it is easy
to see that the lts of components (seen as a trivial sts) would be complete
according to the weaker notion of completeness, although it does not include
any transition for terms with variables.

The straightforward definition of bisimulation equivalence over an sts is given
below.

Definition 3 (∼strict). A symmetric relation ≈ on coordinators is a strict sym-
bolic bisimulation if for all C[X], D[X] with C[X] ≈ D[X] and for any symbolic
transition C[X] {ϕ}

aC
′[Y], there exists D[X] {ϕ}

aD
′[Y] such that C ′[Y] ≈

D′[Y]. The largest strict symbolic bisimulation ∼strict is an equivalence called
strict symbolic bisimilarity

Strict bisimilarity requires a transition to be simulated by a transition with
exactly the same label. Syntactic equality has been preferred to logical equiva-
lence since, in general, the latter could be hard to verify or, even worse, unde-
cidable. Nevertheless, given a specific calculus, equivalences which are easy to
check can be exploited in symbolic bisimilarity (e.g., to standardise the labels)
and the theory easily carries over.

Strict symbolic bisimilarity distinguishes at least as much as universal bisim-
ilarity, i.e. ∼strict implies ∼univ (Theorem 1 below, taken from [5]), but the
converse does not hold in general. A better approximation of ∼univ is obtained
by relaxing the requirement of exact (spatial) matching between formulae.

6 P. Baldan, A. Bracciali, and R. Bruni

Definition 4 (�∼large). A symmetric relation ≈ on coordinators is a large sym-
bolic bisimulation if for all C[X], D[X] with C[X] ≈ D[X] and for any transition
C[X] {ϕ}

aC
′[Y] there exist a transition D[X] {ψ}

aD
′[Z] and a spatial formula

η such that ϕ = ψ[η/Z] and C ′[Y] ≈ D′[η]. The greatest large bisimulation �∼large

is called large symbolic bisimilarity.

As a trivial example, let Σ = {a, f(.), g(.)} and take the sts with transitions
f(X) {Y }

τY , g(X) {Y }

τY , and g(X) {a}

τa. Obviously, f(X) �∼strict g(X),
because f(X) cannot match the last transition of g(X), while f(X) �∼largeg(X)
since the formula X is “more general” than the spatial formula a.

Theorem 1 (∼strict ⇒ �∼large⇒ ∼univ). For any sound and complete sts and
for all coordinators C[X], D[X] we have

C[X] ∼strict D[X] ⇒ C[X] �∼largeD[X] ⇒ C[X] ∼univ D[X].

Bisimulation by Unification. The framework introduced in [5] is completed by a
constructive definition of a suitable sts associated to any pc whose operational
proof rules are in algebraic format [20] (that generalises, e.g., the well-known
De Simone format [17]). Starting from the algebraic sos proof rules for PC,
a Prolog program ProgA(PC) can be derived which specifies a sound and com-
plete sts over LPC. The program defines a predicate trs(X,A,Y) whose intended
meaning is “any component satisfying X can perform a transition labelled by A
and become a component satisfying Y ”. Then, given a coordinator C[X], if the
query ?- trs(C[X], A, Z) is successful, the corresponding computed answer
substitution represents a symbolic transition for the coordinator. The code in
ProgA(PC) consists of the obvious translation of the sos rules into Horn clauses,
with an additional rule to handle behavioural formulae. Intuitively, the unifi-
cation mechanism is used to compute the minimal requirements on the process
variables of a coordinator which allow an sos rule to be applied. We remark that
if the set of sos rules of PC is finite, then the program ProgA(PC) has a finite
number of clauses and the defined sts is finitely branching (even if the whole sts
has instead infinitely many states and transitions, as obviously it must include
all the original transitions over components).

3 Properties of Strict and Large Bisimilarities

In this section we study some basic properties of ∼strict and �∼large, and we show,
by means of a few examples, that they capture different notions of simulation.

Comparing ∼strict and �∼large. The relation �∼large is always coarser than ∼strict.
On the other hand, �∼large is not guaranteed to be an equivalence relation, since
it may fail to be transitive in some “pathological” situations (as the one below).

Example 1. Consider the simple process calculus sc, whose processes P ∈ P are:

P ::= 0 | r.P | l(P) | k1(P) | k2(P) | k3(P)

Symbolic Equivalences for Open Systems 7

k1(X) {l(r.Y)}

ok1(Y) k2(X) {l(r.Y)}

ok2(Y) k3(X) {l(r.Y)}

ok3(Y)

k1(l(X)) {�r.Y }

ok1(Y) k2(l(X)) {�r.Y }

ok2(Y) k3(l(X)) {�r.Y }

ok3(Y)

k2(l(X)) {r.Y }

ok2(Y) k3(X) {l(r.l(Y))}

ok3(l(Y))

Fig. 2. Symbolic transitions for ki(X) and ki(l(X))

k2(X)
∼strict�∼large

∼univ

k1(X)
�∼strict�∼large

∼univ

k3(X)
�∼strict

� �∼large

∼univ

k2(X)

k2(l(X))
�∼strict

� �∼large

∼univ

k3(l(X))

Fig. 3. Example 1 illustrated

This calculus is not intended to represent a meaningful case study, but just
a way to illustrate some peculiarities of our theory. For mnemonic reasons r can
be interpreted as a generic resource, l() as a locking mechanism, and k1(),
k2() and k3() as three different access keys which may open and fetch a locked
resource. The operational semantics of sc is given by the reduction rules below:

r.P→rP ki(l(r.P))→oki(P) i = 1, 2, 3

The use of a resource r is represented by a transition labelled by r, while the
use of a key to unlock a process generates a transition labelled by o (open).

Let S be any sound and complete sts whose transitions for the open terms
k1(X), k2(X), k3(X), k1(l(X)), k2(l(X)), k3(l(X)) are exactly the ones in Fig. 2
(for instance, they could have been generated by separate specifications provided
for each ki by different system analysts). Observe that in S:

– k1(X) �∼largek3(X), since k3(X) {l(r.l(Y))}

ok3(l(Y)) can be simulated by the

instance of k1(X) {l(r.Z)}

ok1(Z), where Z is replaced by the spatial formula

l(Y). Note that, instead, k1(X) �∼strict k3(X).
– k2(X) �∼largek1(X), because k2(X) ∼strict k1(X).
– k2(X)� �∼largek3(X) since k3(X) {l(r.l(Y))}

ok3(l(Y)) cannot be simulated via
k2(X) {l(r.Z)}

ok2(Z) with Z replaced by l(Y), as the target processes
k3(l(Y)) and k2(l(Y)) are not large bisimilar. In fact, though, in this specific
example, the formulae r.Y and r.Y are satisfied by the same components
(i.e., {r.p | p ∈ P}), the moves of coordinators k3(l(Y)) and k2(l(Y)), re-
spectively labelled by r.Y and r.Y , cannot be related in the (strict or large)
bisimulation game. However it holds that k3(l(Y)) ∼univ k2(l(Y)).

The outcome of the above discussion is summarised in Fig. 3. In particular,
it shows that �∼large is non-transitive, i.e., �∼large ◦ �∼large �⊆ �∼large. Moreover, in
general, ∼strict �

�∼large� ∼univ, i.e., all the inclusions in Theorem 1 are proper.

8 P. Baldan, A. Bracciali, and R. Bruni

Therefore, both ∼strict and �∼large have some pros and cons. In fact ∼strict is
always an equivalence and, in view of an automated verification, its simpler for-
mulation is helpful. Furthermore, being defined as the straightforward notion of
bisimilarity on the sts, existing tools and techniques can be reused. On the other
hand, �∼large yields a more precise approximation of ∼univ and, from Theorem 1 it
immediately follows that, for sound and complete stss, (�∼large)∗⇒ ∼univ. Hence
in using �∼large as a proof technique for ∼univ, transitivity can still be exploited.

Congruence Properties. Call a relation ∼= on coordinators an outer-congruence
if C[X] ∼= D[X] implies C[E[Y]] ∼= D[E[Y]] for any E[Y], an inner-congruence if
C[X] ∼= D[X] implies E[C[X]] ∼= E[D[X]] for any E[Y], and a quasi-congruence
if it is both an inner- and an outer-congruence. A quasi-congruence which is an
equivalence is called a congruence. While ∼univ is an outer-congruence by defini-
tion, in general, ∼strict and �∼large are not : taking the calculus sc in Example 1
and the sts S therein, we have k2(X) �∼largek1(X), but k2(l(X))� �∼largek1(l(X)).
Actually, k2(X) ∼strict k1(X) and thus also ∼strict is not an outer-congruence.
However, since ∼univ is an outer-congruence and both �∼large and ∼strict are cor-
rect approximations of ∼univ, we can reduce the proof of C[E[Y]] ∼univ D[E[Y]]
to the proof of C[X] �∼largeD[X] or C[X] ∼strict D[X].

Many sos formats have been introduced to guarantee that bisimilarity is a
congruence. This property can be lifted to the symbolic level for pc in De Simone
format [17] (a special case of the algebraic format) by taking the sts defined via
the Prolog program ProgA(sc) mentioned in § 2. Moreover, by Definition 4, the
absence of spatial operators in the premises of De Simone rules, and hence in
the formulae used as labels in the sts, guarantees ∼strict=

�∼large.

Proposition 1. If PC is in De Simone format, then ProgA(PC) yields a sts
where ∼strict is a congruence and ∼strict=

�∼large.

The generalisation of Proposition 1 to other sos formats (e.g., gsos) is
non-trivial, because they are incomparable w.r.t. the algebraic format and thus
ProgA(PC) (see § 2) cannot be exploited to define a sound and complete sts.

4 Syntactic and Semantic Redundancy

A sound and complete sts may have several different symbolic transitions de-
parting from the same coordinator C[X] but whose instances cover non-disjoint
sets of component behaviours. In this section we discuss the influence of redun-
dant symbolic specifications on symbolic bisimilarities. The following example
shows that we can distinguish between two kinds of redundancy: syntactic and
semantic.

Example 2. Consider the calculus sc in Example 1, where k1(X) �∼largek3(X),
but k1(X) �∼strict k3(X) (see Fig. 3). The equivalence ∼strict distinguishes the
two coordinators because of the symbolic transition k3(X) {l(r.l(Y))}

ok3(l(Y)),
which is an instance of the more general transition k3(X) {l(r.Y)}

ok3(Y). This
is what we call syntactic redundancy.

Symbolic Equivalences for Open Systems 9

On the other hand, k2(l(X)) �∼strict k3(l(X)) and k2(l(X))� �∼largek3(l(X)),
while k2(l(X)) ∼univ k3(l(X)). Roughly, this is due to the fact that the two
distinct symbolic transitions k2(l(X)) {r.Y }

ok2(Y) and k2(l(X)) {�r.Y }

ok2(Y)

characterise the same set of concrete component transitions (since, in sc, the
different formulae r.Y and r.Y are satisfied by the same processes). This is
an aspect of what we call semantic redundancy (in general more complex cases
can arise, whose solution is not as obvious as here and that cannot be recasted
simply in terms of formula equivalences).

4.1 Syntactic Redundancy and Irredundant Bisimilarity

For solving syntactic redundancy the idea is to consider a symbolic bisimula-
tion that takes into account only the “more general” symbolic transitions. For
simplicity, we consider calculi without structural axioms.

Definition 5 (Irredundant Transition). Given a coordinator C[X] in an
sts, a transition C[X] {ϕ}

aC
′[Y] is called redundant if there exists a transition

C[X] {ψ}

aC

′′[Z] and a spatial formula χ �= Y such that C ′′[χ] = C ′[Y], and
ψ[χ/Z] = ϕ. A transition is called irredundant if it is not redundant.

In Example 1, the presence of the (irredundant) transition k3(X) {l(r.Y)}

ok3(Y)

makes k3(X) {l(r.l(Y))}

ok3(l(Y)) a redundant transition.

Definition 6 (�∼irred). A symmetric relation ≈ on coordinators is an irredun-
dant symbolic bisimulation if for all C[X], D[X] such that C[X] ≈ D[X], for any
irredundant transition C[X] {ϕ}

aC
′[Y], there is a transition D[X] {ϕ}

aD
′[Y]

such that C ′[Y] ≈ D′[Y]. The largest irredundant symbolic bisimulation �∼irred is
called irredundant symbolic bisimilarity.

Like large bisimilarity, also �∼irred might fail to be an equivalence (because
of the lack of transitivity). However, the syntactical property in Proposition 2,
when satisfied by an sts, guarantees transitivity.

Proposition 2. Let S be an sts such that for any redundant symbolic transition
C[X] {ϕ}

aC
′[Y], if C[X] {ψ}

aC
′′[Z] and there exists a spatial formula χ with

ψ[χ/Z] = ϕ, then C ′′[χ] = C ′[Y]. Then �∼irred is transitive.

As mentioned above, large and irredundant bisimilarities, although arising
from similar motivations, are (in general) not comparable. To see, for instance,
that �∼irred �⊆ �∼large consider Example 2. Recall that k2(X)� �∼largek3(X), but
instead k2(X) �∼irredk3(X), since transition k3(X) {l(r.l(Y))}

ok3(l(Y)) is redun-
dant and thus k2(X) and k3(X) have the “same” irredundant transitions. An
analogous counterexample shows that �∼large �⊆ �∼irred (see [6]). Hence it can
be useful to combine �∼large and �∼irred, as, of course, for any sound and com-
plete sts, (�∼large∪ �∼irred)∗⇒ ∼univ. The relationships between the bisimilarities
introduced so far are summarised in Fig. 1(a), where arrows represent subset
inclusion.

Again, the absence of spatial operators in the premises of De Simone rules,
and hence in the formulae used as labels in the sts, guarantees ∼strict=

�∼irred.

10 P. Baldan, A. Bracciali, and R. Bruni

Proposition 3. If PC is in De Simone format, then ProgA(PC) yields a sts
where ∼strict=

�∼irred.

4.2 On Semantic Redundancy

The fact that �∼large and �∼irred are incomparable shows that large bisimulation
goes beyond syntactic redundancy. Large bisimilarity has been introduced to
avoid the distinction between two coordinators C[X] and D[X] that can perform
the same transitions, apart from transitions which are, in a sense, instances of
other existing transitions. However, in practice, since redundancy check is nested
inside the definition, �∼large can deal with a more general notion of redundancy,
which has a semantic flavour.

The ideal situation would be when the whole hierarchy in Fig. 1(a) collapses
into the simplest symbolic bisimilarity ∼strict, which could then be used as a
complete proof technique for ∼univ.

However, when sketching the proof of the possible implication ∼univ ⇒ ∼strict,
one soon realizes that ∼univ can hardly be formulated as a strict bisimilarity. In
fact assume C[X] ∼univ D[X], and take any symbolic move C[X] {ϕ(Y)}

aC
′[Y]

of a sound and complete sts. Then, by soundness, we know that ∀pi, qi such
that pi |= ϕ(qi) we have C[pi]→aC

′[qi]. Then, since C[X] ∼univ D[X], for any
such move, we must have D[pi]→adi, with di ∼ C ′[qi]. By completeness, it must
be the case that there exist ϕi(Z), D′

i[Z], q′i with D[X] {ϕi(Z)}

aD

′
i[Z] such that

pi |= ϕi(q′i) and D′
i[q

′
i] = di, meaning that in general, according to ∼univ, a sym-

bolic move of C[X] can be simulated via the joint effort of several symbolic moves
of D[X]. More precisely, the choice of the symbolic move D[X] {ϕi(Z)}

aD
′
i[Z]

is dependent on the components pi and qi that C[X] is going to use. Thus, the
difference between the symbolic and the universal approach is essentially the
difference between “early” and “late” semantics, based on the time in which pi

and qi are fixed (before the choice of transition D[X] {ϕi(Z)}

aD

′
i[Z] in ∼univ,

after in ∼strict).
The distinction between early and late is inessential provided that either (1)

each formula uniquely characterises exactly one pi and one qi, or (2) the set
of processes satisfying any two different formulae are disjoint and all symbolic
transitions with the same source have different labels. Only having the calculus
at hand, these semantic assumptions can be verified and eventually exploited.
Finding a general way to face this issue is a challenging open problem.

The discussion about semantic redundancy also suggests that syntactical for-
mats are not enough for guaranteeing that exact approximations of ∼univ can
be inferred. Indeed, the next example shows that even De Simone format cannot
ensure that ∼strict=∼univ.

Example 3. Let us extend finite ccs with the operators onea(), stop(), and
with the sos rule

P→μQ

onea(P)→astop(Q)

The resulting calculus ccs∗ adheres to the De Simone format. One can easily
verify that the processes C[X] = a.0+a.b.0+a.oneb(X) and D[X] = a.0+a.b.0+

Symbolic Equivalences for Open Systems 11

stop(X) are universally bisimilar, but in the sts generated by ProgA(ccs∗) (see
§ 2), they are not strict bisimilar (intuitively, because instantiation is dynamic in
the symbolic bisimulation game, while it is decided once and forever for ∼univ).

5 Symbolic Trace Semantics

Bisimilarity relates states that have “the same” branching structure. Often this
feature is not directly relevant to the abstract view of the system, provided that
the states can perform “the same” sequences of transitions. To this purpose,
trace semantics—following the terminology introduced in [23]—are sometimes
preferred to bisimilarity. In this section we define a hierarchy of symbolic trace
semantics.

A variety of different (decorated) trace semantics has been studied in the
literature (e.g., ready traces, failure traces, completed traces, accepting traces,
see [2] for an overview), each relying on particular interleaved sequences of ac-
tions and state predicates. Here we just consider the basic case of finite traces
(hereafter simply called traces), where finite sequences of actions are observed.

Given a component p ∈ P, a trace of p is a finite sequence ς = a1a2 · · · an ∈
Λ∗ such that there exist n components p1, . . . , pn with p→a1p1→a2 · · ·→an

pn

(abbreviated p→ςpn or just p→ς). The trace language of p is the set L(p) =
{ς ∈ Λ∗ | p→ς}. Two components p and q are trace equivalent, written p � q,
if L(p) = L(q). Quite obviously, for all components p, q ∈ P, if p ∼ q then
p � q (but the converse implication does not hold in general). As in the case of
bisimilarity, the natural way of lifting trace equivalence to coordinators consists
of comparing all their closed instances, defining C[X] �univ D[X] iff for all
p ∈ P, C[p] � D[p].

A different notion of trace equivalence for coordinators is readily obtained if
an sts for the calculus is available. In fact, symbolic traces can be straightfor-
wardly defined as sequences of (formula,action)-pairs.

Definition 7 (�strict). A symbolic trace of a coordinator C[X] in an sts S is a
finite sequence ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ×Λ)∗, where Φ is the set of
formulae in LPC, such that there exist m coordinators C1[X1], . . . , Cm[Xm] with
C[X] {ϕ1}

a1C1[X1] {ϕ2}

a2 · · · {ϕm}

am
Cm[Xm], (abbreviated C[X]→ζCm[Xm]

or just C[X]→ζ). The strict trace language of C[X] is the set L(C[X]) = {ζ ∈
(Φ× Λ)∗ | C[X]→ζ}. Two coordinators C[X] and D[X] are strict trace equiva-
lent, written C[X] �strict D[X], if L(C[X]) = L(D[X]).

We have ∼strict⇒�strict (see Theorem 2 at the end of the current section),
and the inclusion is proper, as shown by the next example.

Example 4. Consider the calculus scm, a restriction-free version of the ambient
calculus [11] with asynchronous ccs-like communication, whose set of processes
P is defined in Fig. 4. The parallel operator | is associative and commutative,
with 0 the identity, a, b, ... are channels and n,m, ... ambient names. The opera-
tional semantics of scm, defined by sos rules, states that, in the ambient calculus

12 P. Baldan, A. Bracciali, and R. Bruni

P ::= 0 | ā | a.P | open n.P | in n.P | out n.P | n[P] | P |P

ϕ ::= X | � . ϕ | 0 | α.ϕ | n[ϕ] | ϕ1|ϕ2

n[P] | open n.Q → P |Q (open)
n[P]|m[in n.Q|R] → n[P |m[Q|R]]

(in)

n[P |m[out n.Q|R]] → n[P]|m[Q|R]
(out)

n[a.P |ā|Q] → n[P |Q]
(comm)

P → Q

P |R → Q|R (par)
P → Q

n[P] → n[Q]
(amb)

Fig. 4. Syntax, associated logic and operational semantics of scm

style, processes can move in, move out and open environments, and also asyn-
chronously communicate within them. Being Λ = {τ}, transition labels are not
relevant and are omitted, i.e., we write → and {ϕ}

 in place of →τ and {ϕ}

τ .
Figure 4 also shows the formulae ϕ of the associated logic LSCM, where X is a
process variable, n an ambient name and α ∈ {a, ā, open n, in n, out n}. Since
transitions are unlabelled, the modal operator does not mention any action.

Let us consider C[X] = m[a.(a.0|b.0)|X] and D[X] = m[a.0|a.b.0|X], and
the sts generated by ProgA(scm) (see § 2). It holds C[X] �∼strict D[X], since,
for instance, the transition C[X] {ā|Y }

 C ′[Y] = m[a.0|b.0|Y] could only be
simulated by the transition D[X] {ā|Y }

D′[Y] = m[a.b.0|Y], but C ′[Y] �∼strict

D′[Y] (since D′[X] can not simulate C ′[X] {b̄|Z}

m[a.0|Z]). On the other hand,
C[X] �strict D[X]. In fact, either C[X] {ā|Y1}

 C1[Y1] {ā|Y2}

 C2[Y2] {b̄|Y3}

m[Y3]
or C[X] {ā|Y1}

 C1[Y1] {b̄|Y2}

 C3[Y2] {ā|Y3}

m[Y3], for obvious C1[Y1], C2[Y2] and
C3[Y2], and hence, missing the label components, the language L(C[X]) is

{λ , ā|Y1 , ā|Y1 ā|Y2 , ā|Y1 b̄|Y2 } ∪ {ā|Y1 ā|Y2 b̄|Y3 , ā|Y1 b̄|Y2 ā|Y3} ·L(m[Y3]),

where “·” is language concatenation and λ is the empty trace. The language
L(D[X]) is the same as L(C[X]).

An alternative notion of symbolic trace can be introduced by noting that
formulae ϕ and ψ labelling two consecutive transitions can be composed by
replacing the variable occurring in ϕ with the formula ψ.

Definition 8 (Tight Traces). Let ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ ×
Λ)∗ be a symbolic trace of a coordinator C[X]. The corresponding tight
trace is the pair comp(ζ) = (ϕ, a1a2 · · · am) ∈ Φ × Λ∗, where ϕ =
ϕ1[ϕ2[. . . [ϕm/Xm−1] . . . /X2]/X1].

Tight traces can now be used to better approximate �univ.

Definition 9 (�stight). The strict tight trace language of C[X] is C(C[X]) =
{ρ ∈ Φ×Λ∗ | ∃ζ ∈ L(C[X]). ρ = comp(ζ)}. Two coordinators C[X] and D[X] are
strict tight trace equivalent, written C[X] �stight D[X], if C(C[X]) = C(D[X]).

Symbolic Equivalences for Open Systems 13

Since comp(.) is a function, �strict ⇒ �stight (Theorem 2). As shown by the
next example the inclusion is proper (since different symbolic traces can give
rise to the same tight trace).

Example 5. Consider the calculus foo, defined over the unsorted signature Σ =
{a, f(.), g(.), h(.), l(.), k(.)}, with the rules:

f(h(X))→ah(X) g(l(X))→al(X)
h(X)→bX l(h(X))→bX
f(X)→ak(X) g(l(h(X)))→ak(X)

From the symbolic transitions below, generated by ProgA(foo), it is easy
to see that f(X) ��strict g(l(X)), while f(X) �stight g(l(X)) (the traces
〈h(Y), a〉〈Z, b〉 and 〈Y, a〉〈h(Z), b〉 collapse in the tight trace 〈h(Z), a b〉).

f(X) {h(Y)}

a h(Y) {Z}

b Z . . . f(X) {Y }

ak(Y)

g(l(X)) {Y }

a l(Y) {h(Z)}

b Z . . . g(l(X)) {h(Y)}

ak(Y)

As it happens for bisimilarity, the requirement of exact match between the
formulae observed in a trace can be relaxed for spatial formulae.

Definition 10 (Saturated Trace). A saturated trace of C1[X1] is a finite
sequence ζ = 〈ϕ1, a1〉〈ϕ2, a2〉 · · · 〈ϕm, am〉 ∈ (Φ × Λ)∗, such that there exist m
coordinators C2[X2], ..., Cm+1[Xm+1] and m spatial formulae ψ1, ..., ψm with:

1. Ci[Xi] {ϕ′
i}

ai
C ′

i[Yi],
2. Ci[Xi] = C ′

i−1[ψi−1],
3. ϕi = ϕ′

i[ψi/Yi],

for all i ∈ [1,m]. The saturated trace language of C[X] is the set S(C[X]) of its
saturated traces.

A saturated trace in S is basically a symbolic trace in the sts obtained from
S by adding for each symbolic transition C[X] {ϕ}

aC
′[Y] all of its instances,

i.e., a transition C[X] {ϕ[ψ/Y]}

aC

′[ψ] for any spatial formula ψ.

Definition 11 (
��large). C[X] and D[X] are large trace pre-equivalent, written

C[X]
��largeD[X] if L(C[X]) ⊆ S(D[X]) and L(D[X]) ⊆ S(C[X]). Large trace

equivalence �large is the transitive closure of
��large.

Analogously to large bisimilarity, large trace pre-equivalence
��large might not

be transitive. Hence its transitive closure is considered to obtain an equivalence.
Finally, to overcome syntactic redundancy, a notion of symbolic trace equiv-

alence can be defined exploiting irredundant transition (see Definition 5).

Definition 12 (
��irred). Let I(C[X]) be the subset of L(C[X]) containing traces

composed by irredundant transitions only. Two coordinators C[X] and D[X] are
irredundant trace pre-equivalent, written C[X]

��irredD[X] if I(C[X]) ⊆ L(D[X])
and I(D[X]) ⊆ L(C[X]). Irredundant trace equivalence �irred is the transitive
closure of

��irred.

14 P. Baldan, A. Bracciali, and R. Bruni

The “tight” versions of
��large and

��irred can be defined as in the case of the
strict equivalence, by resorting to the corresponding tight trace languages (see
Definition 8). This leads to the trace pre-equivalences

��ltight and
��itight refined

by the original ones, i.e., such that
��large ⊆ ��ltight and

��irred ⊆ ��itight.
The theorem below clarifies all the relationships between all bisimilarities

and trace semantics introduced so far. As expected, each kind of bisimilarity is
finer than the corresponding trace semantics. The diamond involving the strict,
large, irredundant and universal relations also holds for trace semantics.

Theorem 2. Given any sound and complete sts for a process calculus PC, the
relationships indicated in Fig. 1(b) hold, where arrows represent subset inclusion.

6 Concluding Remarks

We introduced in [5] a methodology for reasoning about the operational and
abstract semantics of open systems, viewed as coordinators in suitable process
calculi, with focus on bisimilarity. Here, we have analysed how redundancy in sts
may influence the quality of the approximation of universal bisimilarity ∼univ,
and we have provided a hierarchy of symbolic bisimilarities (Fig. 1(a)), where
alternative equivalences for approximating ∼univ are proposed and studied. The
approach has been extended to non-branching semantics, and, correspondingly,
a hierarchy of symbolic equivalences (Fig. 1(b)) has been established.

As a matter of future investigation, we plan to develop the treatment of names
and name restriction in order to deal with open systems where fresh or secret
resources are a main concern. In particular, the notion of sts and the underly-
ing process logic should be extended to deal with a logical notion of freshness,
possibly taking inspiration from [9, 10]. The higher-order unification mechanism
of λ-Prolog [28] could provide a convenient framework for the construction of
the sts.

In the setting of name-based calculi, the openness of a system can involve not
only process variables, but also communication on shared channels. This view is
not in conflict with our approach, but it rather suggests an appealing direction
for the future development of our work. Also for value-passing and name-based
calculi, transition labels are typically structured. As shown in [22], this fact
can be profitably used in a symbolic approach to define tractable behavioural
equivalences, and, although labels can always be seen as a plain set, we plan to
extend our symbolic approach to cope with structured transition labels.

Symbolic equivalences are intended as means for providing tractable approx-
imations of corresponding equivalences defined by universal quantification over
the set of components. Hence, on the applicative side, we expect some outcomes
in the direction of the automated verification of open systems. Specifically, we
are developing software tools, which, exploiting the Prolog program associated
to an sos specification, support the automated verification of symbolic equiva-
lences. A first prototype tool, called sea (Symbolic Equivalence Analyzer), has
been developed in [30].

Symbolic Equivalences for Open Systems 15

Pursuing further the Prolog-based algorithmic construction of stss, we plan
to investigate the use of meta Logic Programming for the programmable def-
inition of transitions, and thus more specific (automated) reasoning over the
structure of a pc. Moreover, also abductive Logic Programming is worth being
considered for hypothetical, assumption-based reasoning about formulae, e.g.,
“under which assumptions the process P | X can evolve so as to satisfy a given
property?”, which is typically relevant in open and dynamic system engineer-
ing [4, 3].

Related Work. The notion of sts has been influenced by several related for-
malisms. Symbolic approaches to behavioural equivalences can be found in [22,
34], while the idea of using spatial logic formulae as an elegant mathematical
tool for combining structural and behavioural constraints has been separately
proposed in [12, 18]. Many different kinds of labelled transition systems for coor-
dinators have been previously proposed in the literature (e.g., structured tran-
sition systems [15], context systems [25], tile logic [20], conditional transition
systems [32]). Roughly, the distinguishing feature of our approach is the greater
generality of symbolic transition labels which account for spatial constraints over
unspecified components.

In case of ltss with a unique label τ (that can be regarded as reduction
semantics), our approach seems to share some analogies with narrowing tech-
niques used in rewrite systems, and it would be interesting to formally compare
the two approaches. For a CCS fragment, early studies about terms with vari-
ables [21, 27] have shown that the presence of symbolic actions can be helpful in
proving the completeness of axioms for bisimilarity. This work could be inspiring
for addressing analogous issues in other calculi.

Some close relations exist also with the work on modal transition systems [24],
where both transitions that must be performed and transitions which are only
possible can be specified. Consequently the syntax of the calculus is extended
with two kind of prefix operators �a.() and ♦a.(). We recall also the logical pro-
cess calculus of [14], which mixes ccs and a form of μ-calculus, to allow the logical
specification of some components of the system. Our process logic exhibits some
similarities both with the calculus underlying modal transition systems and with
the logical process calculus. However, the purpose of the mentioned formalisms
is to provide a loose specification of a system, where some components are char-
acterised by means of logical formulae. Instead, in our case open systems are
modelled within the original calculus and the sts fully describe their semantics
by using the logic to characterise synthetically their possible transitions.

Process calculi have been traditionally used for cryptographic protocol verifi-
cation, exploiting symbolic semantics for dealing with the infiniteness of the at-
tacker models (typically due to the unconstrained generative power of intruders),
see e.g. [1, 13] and especially the unification-based approach [7]. Such similarities
suggest possible applications of our framework to security-oriented calculi.

The problem of the universal quantification over components in the defini-
tion of behavioural equivalences for open systems has its dual counterpart in
the contextual closure needed when the bisimilarity on components ∼ is not a

16 P. Baldan, A. Bracciali, and R. Bruni

congruence and one defines the largest congruence � contained in ∼, by letting
p � q if for all contexts C[.], C[p] ∼ C[q]. To avoid universal quantification on
contexts, several authors (see [36, 26, 35]) propose a symbolic transition system
for components whose labels are the “minimal” contexts needed by the com-
ponent in order to evolve. Understanding to which extent this duality can be
pursued and exploited is an interesting direction for future research.

References

1. M. Abadi and M.P. Fiore. Computing symbolic models for verifying cryptographic
protocols. Proc. 14th IEEE Computer Security Foundations Workshop, pp. 160–
173. IEEE Computer Society Press, 2001.

2. L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. Hand-
book of Process Algebra, pp. 197–292. Elsevier Science, 2001.

3. R. Allen and D. Garlan. A formal basis for architectural connectors. ACM Trans-
actions on Software Engineering and Methodology, 3(6):213–249, 1997.

4. L.F. Andrade, J.L. Fiadeiro, L. Gouveia, G. Koutsoukos, and M Wermelinger.
Coordination for orchestration. Proc. COORDINATION 2002, LNCS 2315, pp.
5–13. Springer, 2002.

5. P. Baldan, A. Bracciali, and R. Bruni. Bisimulation by unification. Proc. AMAST
2002, LNCS 2422, pp. 254–270, Springer 2002.

6. P. Baldan, A. Bracciali, and R. Bruni. Symbolic equivalences for open systems.
Technical Report TR-03-16, Department of Computer Science, University of Pisa,
2003.

7. M. Boreale. Symbolic trace analysis of cryptographic protocols. Proc. ICALP’01,
LNCS 2076, pp. 667–681. Springer, 2001.

8. L. Caires. A Model for Declarative Programming and Specification with Con-
currency and Mobility. PhD thesis, Departamento de Informática, Faculdade de
Ciências e Tecnologia, Universidade Nova de Lisboa, 1999.

9. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). In Proc. TACS
2001, LNCS 2215, pp. 1–37. Springer, 2001.

10. L. Caires and L. Cardelli. A spatial logic for concurrency (part II). In Proc.
CONCUR 2002, LNCS 2421, pp. 209–225. Springer, 2002.

11. L. Cardelli and A.D. Gordon. Mobile ambients. Proc. FoSSaCS’98, LNCS 1378,
pp. 140–155. Springer, 1998.

12. L. Cardelli and A.D. Gordon. Anytime, anywhere. modal logics for mobile ambi-
ents. In Proc. POPL 2000, pp. 365–377. ACM, 2000.

13. E.M. Clarke, S. Jha, and W. Marrero. Using state space exploration and a natural
deduction style message derivation engine to verify security protocols. In Proc.
PROCOMET’98, Chapmann & Hall, 1998.

14. R. Cleaveland and G. Lüttgen. A logical process calculus. In ENTCS, 2002.
15. A. Corradini and U. Montanari. An algebraic semantics for structured transition

systems and its application to logic programs. Theoret. Comput. Sci., 103:51–106,
1992.

16. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

17. R. De Simone. Higher level synchronizing devices in MEIJE–SCCS. Theoret.
Comput. Sci., 37:245–267, 1985.

Symbolic Equivalences for Open Systems 17

18. J.L. Fiadeiro, T. Maibaum, N. Mart́ı-Oliet, J. Meseguer, and I. Pita. Towards a
verification logic for rewriting logic. Proc. WADT’99, LNCS 1827, pp. 438–458.
Springer, 2000.

19. R. Focardi and R. Gorrieri Classification of Security Properties (Part I: Information
Flow) FOSAD’01 - Tutorial Lectures, LNCS 2171, pp. 331–396. Springer, 2001.

20. F. Gadducci and U. Montanari. The tile model. Proof, Language and Interaction:
Essays in Honour of Robin Milner, pp. 133–166. MIT Press, 2000.

21. R. van Glabbeek. A complete axiomatization for branching bisimulation congru-
ence of finite-state behaviours. In Proc. MFCS’93, LNCS 711, pp 473-484, Springer,
1993.

22. M. Hennessy and H. Lin. Symbolic bisimulations. Theoret. Comput. Sci., 138:353–
389, 1995.

23. C.A.R. Hoare. A model for communicating sequential processes. On the Construc-
tion of Programs. Cambridge University Press, 1980.

24. K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings of LICS,
pages 203–210. IEEE, 1988.

25. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. Proc. ICALP’90, LNCS 443, pp. 526–539. Springer, 1990.

26. J.J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
Proc. CONCUR 2000, LNCS 1877, pp. 243–258. Springer, 2000.

27. R. Milner. A complete axiomatisation for observational congruence of finite-state
behaviours. Information and Computation, 81:227–247, 1989.

28. D. Miller and G. Nadathur. Higher-order logic programming. Handbook of Logics
for Artificial Intelligence and Logic Programming, volume 5, pp. 499–590. Claren-
don Press, 1998.

29. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.
Inform. and Comput., 100(1):1–40,41–77, 1992.

30. R. Nunziato. Sviluppo dell’applicazione SEA per la verifica di sistemi aperti.
Master Thesis, Department of Computer Science, University of Pisa, 2003. (In
Italian.)

31. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, 1981.

32. A. Rensink. Bisimilarity of open terms. Inform. and Comput., 156(1-2):345–385,
2000.

33. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993. CST-99-93
(also published as ECS-LFCS-93-266).

34. D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Inform., 33:69–97,
1996.

35. V. Sassone and P. Sobocinski. Deriving bisimulation congruences using 2-
categories. In Nordic Journal of Computing, volume 10. Elsevier, 2002.

36. P. Sewell. From rewrite rules to bisimulation congruences. Proc. CONCUR’98,
LNCS 1466, pp. 269–284. Springer, 1998.

Specifying and Verifying UML Activity
Diagrams Via Graph Transformation�

Paolo Baldan1, Andrea Corradini2, and Fabio Gadducci2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. We propose a methodology for system specification and ver-
ification based on UML diagrams and interpreted in terms of graphs and
graph transformations. Once a system is modeled in this framework, a
temporal graph logic can be used to express some of its relevant behav-
ioral properties. Then, under certain constraints, such properties can be
checked automatically. The approach is illustrated over a simple case
study, the so-called Airport Case Study, which has been widely used
along the first two years of the AGILE GC project.

1 Introduction

The use of visual modeling techniques, like the UML [22], for the design and de-
velopment of large applications is nowadays well established. In these approaches
a system specification consists of several related diagrams, that represent both
the statics and the dynamics of the system. Since the development process is
made easier if it is possible to reason about the system under development at
an early stage, in this paper we sketch a methodology which allows to express
interesting behavioral properties of the system in a suitable logic, and, under
certain constraints, to verify them automatically. We present our approach by
applying it to a simple case study, which has been widely used along the first
two years of the agile GC project [1], namely the Airport Case Study [2].

The first step of our methodology consists of representing a UML specification
as a Graph Transformation System (GTS). Since the various kinds of diagrams
used in a UML specification essentially are graphs annotated in various ways,
it comes as no surprise that many contributions in the literature use techniques
based on the theory of graph transformation to provide an operational semantics
for UML behavioral diagrams (see, among others, [10–13, 17, 18]). We will stick
to a tiny fragment of the UML, including (suitably restricted) class and instance
diagrams for the statics, and activity diagrams for the dynamics of a system
specification. The class diagram determines the shape of the graphs that will be
used for modeling instance diagrams, called instance graphs, while each activity
in a behavioral diagram will be represented as a graph transformation rule,
describing the effect of such activity on the instance graph.

� Research partially supported by the EU FET – GC Project IST-2001-32747 agile
and the EC RTN 2-2001-00346 SegraVis.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 18–33, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 19

Next, following an approach to the verification of graph transformation sys-
tems developed during the last few years (see [3–5]), we shall introduce a tem-
poral logic which allows for formulating relevant properties of a GTS. The logic
μL2 proposed in [5] (that we slightly modify in order to deal with a more gen-
eral class of graphs) is a propositional μ-calculus where the basic predicates
are monadic second-order formulae interpreted over graphs. For (fragments of)
this logic, verification techniques have been proposed for finite and infinite-state
systems, which exploit finite approximations of the unfolding of the GTS [4, 5].

The expressiveness of the proposed logic is tested against a collection of
properties concerned with the Airport Case Study, which were collected by the
members of the AGILE project in a meeting dedicated to modal and temporal
logics (the proceedings are available at [1]). Even if monadic second-order logic is
very expressive as far as graph properties are concerned, it turns out that some
interesting dynamic properties of the Airport Case Study cannot be encoded
directly in the proposed logic. Being the logic propositional at the temporal
layer, there is no way to write formulae predicating about the properties of a
specific object at different times. We briefly outline a more expressive graph logic,
which, extending μL2 with non-propositional features, allows for overcoming
the mentioned limitations. Unfortunately, the verification techniques in [4, 5] do
not directly apply to this logic, but we are confident that they can be suitably
generalized, at least in the finite-state case.

In the next section, after a brief introduction to the Airport Case Study and
to a partial specification of it using UML, we first show how the states of the
case study can be represented by graphs, and the corresponding activities by
graph transformation rules. Next we introduce the temporal logic for GTSs, and
finally we discuss to what extent some relevant properties can be expressed in
that logic, and which extensions of such logic would be needed.

2 The Airport Case Study

As anticipated above, in this paper we shall illustrate the main concepts using
as running example a fragment of the Airport Case Study, described in [2].

The case study consists of a system representing planes landing and taking
off from airports. The planes transport passengers. Departing passengers check
in and board the plane; their luggage is loaded in the plane. The plane is ready to
take off after all passengers have boarded the plane and their luggage is loaded.
After the plane has reached its destination airport, passengers get off the plane
and claim their luggage. On board, passengers may perform some activities,
such as consuming a meal. The specification and modeling of several aspects of
this case study using a variety of formalisms (UML, CommUnity, KLAIM and
Graph Transformations) is presented in [2].

We shall consider here only the part of the case study related to the Departure
Use Case, including the check-in and boarding of passengers, the loading of their
luggage and the take-off of the plane. A UML instance diagram representing the
initial state of the system is shown in Figure 1 (a), adopting the stereotypes

20 P. Baldan, A. Corradini, and F. Gadducci

mobile and location proposed in a recent extension for mobility of the language
developed inside the agile project; instead, Figure 2 shows an activity diagram
describing the relationships among the relevant activities. In the next subsections
we discuss how to model this system using graph transformation, representing
its states as graphs and the activities as rules.

2.1 Representing States as Hypergraphs

In order to model a UML specification as a graph transformation system, an
obvious pre-requisite is the formal definition of the structure of the graphs which
represent the states of the system, namely the instance graphs. However, there is
no common agreement about this: we shall present a novel formalization, which
shares some features with the one proposed in [14].

An instance graph includes a set of nodes, which represent all data belonging
to the state of an execution. Some of them represent the elements of primitive
data types, while others denote instances of classes. Every node may have at
most one outgoing hyperedge, i.e., an edge connecting it to zero or more nodes.1

Conceptually, the node can be interpreted as the “identity” of a data element,
while the associated hyperedge, if there is one, contains the relevant information
about its state. A node without outgoing hyperedges is a variable: variables only
appear in transformation rules, never in actual states.

<<mobile>>

<<location>>

lh123:Plane

<<mobile>>
suit1:Luggage

<<mobile location>>
atLoc

atLocatLoc

Jan:Passenger

tck:Ticket

Muc:Airport

checked:false

Muc:Airport

suit1:Luggage
Jan:Passenger

lh123:Plane

false

true

luggage

passenger

lu
gg

ag
e

ticket

plane

pa
ss

en
ge

r tic
ke

t

at
Lo

c

at
Lo

c

at
Lo

c

checkedtck:Ticket

(a) (b)

Fig. 1. An instance diagram (a) and the corresponding instance graph (b)

Typically, an instance of a class C is represented by a node n and by a hyper-
edge labeled with the pair 〈instanceName : C〉. This hyperedge has node n as its
only source, and for each attribute of the class C it has a link (a target tentacle)
labeled by the name of the attribute and pointing to the node representing the
attribute value. For the logic presented later in Section 3, we assume that the
source tentacle (linking a hyperedge to its source node) is implicitly labeled by

1 Formally, these graphs are term graphs [21].

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 21

self. Every instance graph also includes, as unary hyperedges (i.e., hyperedges
having only the self tentacle), all constant elements of primitive data types, like
integers (0, 1, -1, . . .) and booleans (true and false), as well as one edge null:C
for each relevant class C.

Figure 1 (a) shows an instance diagram which represents the initial state of
the Airport Scenario. As usual, the attributes of an instance may be represented
as directed edges labeled by the attribute name, and pointing to the attribute
value. The edge is unlabeled if the attribute name coincides with the class of the
value (e.g., lh123 is the value of the plane attribute of tck). An undirected edge
represents two directed edges between its extremes. The diagram conforms to a
class diagram that is not depicted here.

Figure 1 (b) shows the instance graph (according to the above definitions)
encoding the instance diagram. Notice that the graph contains two elements
of a basic data type, true and false: these are depicted as ovals, which stands
actually for a node attached through the self tentacle to a unary hyperedge. Up
to a certain extent (disregarding OCL formulas and cardinality constraints), a
class diagram can be encoded in a corresponding class graph as well; then the
existence of a graph morphism (i.e., a structure preserving mapping) from the
instance graph to the class graph formalizes the relation of conformance.

In the following we shall depict the states of the system as instance diagrams,
which are easier to draw and to understand, but they are intended to represent
the corresponding instance graphs.

take_off

check_in

load_luggageboard

Fig. 2. The Activity Diagram of the Use Case Departure

2.2 Representing Activities as Graph Transformation Rules

Figure 2 shows the activity diagram of the Use Case Departure of the Airport
Case Study. This behavioural diagram ignores the structure of the states and
the information about which instances are involved in each activity, but stresses
the causal dependencies among activities and the possible parallelism among
them. More precisely, from the diagram one infers the requirement that board
and load luggage can happen in any order, after check in and before take off.

By making explicit the roles of the various instances in the activities, we shall
implement each activity as a graph transformation rule. Such rules describe local
modifications of the instance graphs resulting from the corresponding activities.

22 P. Baldan, A. Corradini, and F. Gadducci

We will show that they provide a correct implementation of the activity diagram,
in the sense that the causality and independence relations between the rules are
exactly those prescribed in the activity diagram.

Let us first consider the activity board. Conceptually, in the simplified model
we are considering, its effect is just to change the location of the passenger (i.e.,
its atLoc attribute) from the airport to the plane. In the rule which implements
the activity, we make explicit the preconditions for its application: 1) the passen-
ger must have a ticket for the flight using that plane; 2) the value of the checked
attribute of the ticket must be true; 3) the plane and the passenger must be at
the same location, which is an airport.

All the above requirements are represented in the graph transformation rule
implementing the activity board, shown in Figure 3. Formally, this is a double-
pushout graph transformation rule [7], having the form L

l← K
r→ R, where L,

K and R are instance graphs, and l and r are graph morphisms. In this case l
and r are actually inclusions, represented implicitly by the position of nodes and
edges in the source and target graphs.

true
checked

:Ticket
:Plane

:Airport

true
checked

:Passenger

:Ticket

:Airport

:Plane

true
checked

:Passenger

:Ticket
:Plane

:Airport

at
Lo

c

planeluggage

pa
ss

en
ge

r

tic
ke

t

at
Lo

c

luggage

planeluggage

pa
ss

en
ge

r
atLoc

tic
ke

t

at
Lo

c

atLoc

luggage

planeluggage

pa
ss

en
ge

r

Fig. 3. The graph transformation rule for boarding

Intuitively, a rule states that whenever we find an occurrence of the left-hand
side L in a graph G we may replace it with the right-hand side R. The interface
graphK and the two morphisms l and r provide the embedding information, that
is, they specify where R should be glued with the context graph obtained from
G by removing L. More precisely, an occurrence of L in G is a graph morphism
g : L → G. The context graph D is obtained by deleting from G all the nodes
and edges in g(L− l(K)) (thus all the items in the interface K are preserved by
the transformation). The insertion of R in D is obtained by taking their disjoint
union, and then by identifying for each node or edge x in K its images g(x) in
G and r(x) in R: formally, this operation is a pushout in a suitable category.

Comparing the three graphs in the rule, one can see that, in order to change
the value of the attribute atLoc of the Passenger, the whole hyperedge is deleted
and created again: one cannot delete a single attribute, as the resulting structure
would not be a legal hypergraph.2 Instead, the node representing the identity
of the passenger is preserved by the rule. Also, all the other items present in

2 This is a design choice which forbids the simultaneous application of another rule
accessing the Passenger. Conceptually, this is equivalent to putting a “lock” on the
object whose attribute is changed.

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 23

the left-hand side (needed to enforce the preconditions for the application of the
rule) are not changed by the rule.

In most cases, it is possible to use a much more concise representation of a
rule of this kind, by depicting it as a single graph (the union of L and R), and
annotating which items are removed and which are created by the rule. Figure
4 (a) shows an alternative but equivalent graphical representation of the rule
of Figure 3 as a degenerate kind of collaboration diagram (without sequence
numbers, guard conditions, etc.) according to [6].

:Ticket

:Passenger

:Plane
<<mobile location>>

:Airport
<<location>><<mobile>>

checked: true

{new}atLoc

board

{destroy}
atLoc

at
Lo

c

:Passenger

:Ticket :Ticket

:Airport

{new}{destroy}

check_in

checked:truechecked:false

<<mobile>>
atLoc

<<location>>

(a) (b)

Fig. 4. The rules for boarding (a) and for checking in (b) as collaboration diagrams

Here the state of the system is represented as an instance diagram, and the
items which are deleted by the rule (resp. created) are marked by {destroy} (resp.
{new}: beware that these constraints refer to the whole Passenger instance, and
not only to the atLoc tentacle). For graph transformation rules with injective
right-hand side (and no shared variable, like all those considered here), this
representation is equivalent to the one with explicit left-hand side, interface and
right-hand side graph, and for the sake of simplicity we will stick to it.

Figure 4 (b) and Figures 5 (a, b) show the rules implementing the remaining
three activities of Figure 2, namely check in, load luggage and take off: the corre-
sponding graphical representation can be recovered easily. Notice that the effect
of the take off rule is to change the value of the atLoc attribute of the plane: we
set it to null, indicating that the location is not meaningful after taking off; as a
different choice we could have used a generic location like Air or Universe.

The next statement, by exploiting definitions and results from the theory
of graph transformation, describes the causal relationships among the potential
rule applications to the instance graph of Figure 1 (b) (as depicted in Figure 6),
showing that the dependencies among activities stated in the diagram of Figure
2 are correctly realized by the proposed implementation.

Proposition 1 (Causal Dependencies Among Rules Implementing Ac-
tivities). Given the start instance graph G0 of Figure 1 (b) and the four graph
transformation rules of Figures 4 and 5,

– the only rule applicable to G0 is check in, producing, say, the instance graph
G1;

24 P. Baldan, A. Corradini, and F. Gadducci

:Airport
<<location>> <<mobile>>

<<mobile location>>

checked: true

atLoc

at
Lo

c

{n
ew

}

load_luggage

:Luggage

:Plane:Ticket

atLoc
{destroy}

<<location>>
:Airport

<<mobile>><<mobile>>

checked: true

<<mobile location>>

:Luggage

:Plane:Ticket

:Passenger

atLoc

at
Lo

c

{d
es

tr
oy

}

take_off

at
Lo

c

null

{new}
atLoc

(a) (b)

Fig. 5. The rules for loading the luggage (a) and for taking off (b)

G0 G1 G2 G3

G"1

G’1

check_in take_off

board

load_luggageboard

load_luggage

Fig. 6. Dependencies among the graph transformation rules of the Departure Use Case

– both board and load luggage can be applied to graph G1, in any order or even
in parallel, resulting in all cases in the same graph (up to isomorphism), say
G2;

– rule take off can be applied to G2, but not to any other instance graph gen-
erated by the above mentioned rules.

2.3 Enriching the Model with Synchronized Hypergraph Rewriting

Quite obviously, the rule take off fits in the unrealistic assumption that the flight
has only one passenger. Let us discuss how this assumption can be dropped by
modeling the fact that the plane takes off only when all its passengers and all
their luggages are boarded.

We shall exploit the expressive power of Synchronized Hypergraph Rewriting
[15], an extension of hypergraph rewriting, to model this situation in a very
concise way. Intuitively, the plane has as attribute the collection of all the tickets
for its flight, and when taking off it broadcasts a synchronization request to all
the tickets in the collection. Each ticket can synchronize only if its passenger
and its luggage are on the plane. If the synchronization fails, the take off rule
cannot be applied. This activity can be considered as an abstraction of the check
performed by the hostess/steward before closing the gate.

Conceptually, a graph transformation rule with synchronization is a rule
where one or more nodes of the left-hand side may be annotated with an action.

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 25

If the node is a variable, the action is interpreted as a synchronization request
issued to the instance which will be bound to the variable when applying the
rule. If the annotated node is the source of an instance, the action is interpreted
as an acknowledgment issued by that instance. Given an instance graph, a bunch
of such rules with synchronization can be applied simultaneously to it only if,
besides satisfying the usual conditions for parallel application, all the synchro-
nization requests are properly matched by a corresponding acknowledgment.

:Airport

:Plane

null

take_off_synch

at
Lo

c atLoc{new}{d
es

tr
oy

}

ticketList

boarded

<<mobile>>
:Passenger

<<mobile>>

<<mobile location>>
:Ticket

:Luggage

:Plane

at
Lo

c

atLoc

boarded_ack

checked:true

boarded

(a) (b)

Fig. 7. The rules for taking off while checking that all passengers are on board (a),
and for acknowledging the synchronization (b)

To use this mechanism in our case study, let us first assume that at the
class diagram level we inserted an association Plane

1 ∗⇐⇒ Ticket with the obvious
meaning: we call TicketList the corresponding attribute of a plane. Figure 7 (a)
shows rule take off synch: the plane takes off, changing its location from the
airport to null, only if its request for a synchronization with a boarded action
is acknowledged by its collection of tickets. In this rule we depict the state as
an instance graph, showing explicitly that a node representing the value of the
attribute ticketList of the plane is annotated by the boarded action. On the other
side, according to rule boarded ack of Figure 7 (b), a ticket can acknowledge a
boarded action only if its passenger and its luggage are both located on its plane.
Here the state is depicted again as an instance diagram, and the boarded action
is manifested on the node representing the identity of the ticket.

To complete the description of the system, we must explain how the tickets
for the flight of concern are linked to the ticketList attribute of the plane. In
order to obtain the desired synchronization between the plane and all its tickets,
we need to assume that there is a subgraph which has, say, one “input node”(the
ticketList attribute of the plane) and n “output nodes” (the tickets); furthermore,
this subgraph should be able to “match” synchronization requests on its input
to corresponding synchronization acknowledgments on its ouputs.

More concretely, this is easily obtained, for example, by assuming that the
collection of tickets is a linked list, and by providing rules for propagating the

26 P. Baldan, A. Corradini, and F. Gadducci

synchronization along the list: this is shown in Figure 8, where the rules should
be intended to be parametric with respect to the action act.

:List :ListNode

null

:ListNode
first

act

start_act next_act

act

act
next

act

last_act

act actact

next

elementelement

Fig. 8. The rules for broadcasting synchronizations along a linked list

3 A Logic for Graph Transformation Systems

This section presents a slight variation of the behavioral logic for graph trans-
formation systems proposed in [5], adapted to deal with hypergraphs. It is es-
sentially a variant of the propositional μ-calculus (i.e., a temporal logic enriched
with fixed-point operators) where propositional symbols range over arbitrary
state predicates, characterizing static graph properties, which are expressed in a
monadic second-order logic.

3.1 A Monadic Second-Order Logic for Graphs

We first introduce the monadic second-order logic L2 for specifying graph prop-
erties, i.e.,“static” properties of system states. Quantification is allowed over
edges, but not over nodes (as, e.g., in [8]).

Definition 1 (Graph Formulae). Let X1 = {x, y, w, . . .} be a set of (first-
order) edge variables and X2 = {X,Y,W, . . .} be a set of (second-order) variables
ranging over edge sets. The set of graph formulae of logic L2 is defined as

F ::= x = y | x.attrx = y.attry |
type(x) = � | x ∈ X | (Predicates)
F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)
∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

where � belongs to a set Λ of labels, and attrx , attry to a fixed set of attribute
names. We denote by free(F) and Free(F) the sets of first-order and second-
order variables, respectively, occurring free in F .

Let G be an instance graph, let F be a graph formula in L2, and let σ :
free(F) → Edges(G) and Σ : Free(F) → P(Edges(G)) be valuations for the
free first- and second-order variables of F , respectively. The satisfaction relation
G |=σ,Σ F is defined inductively, in the usual way; for instance

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 27

G |=σ,Σ x = y ⇐⇒ σ(x) and σ(y) are the same edge;
G |=σ,Σ x.attrx = y.attry ⇐⇒ edges σ(x) and σ(y) have attributes (tenta-

cles) attrx and attry, respectively, and they
point to the same node;

G |=σ,Σ type(x) = � ⇐⇒ the object represented by edge σ(x) is an in-
stance of class �;

G |=σ,Σ x ∈ X ⇐⇒ edge σ(x) belongs to the set of edges Σ(X).

If the formula F is closed then we will write G |= F instead of G |=∅,∅ F . As an
example, the formula ∃p.∃t.type(p) = Passenger ∧ type(t) = Ticket ∧ p.ticket =
t.self holds true in the instance graph of Figure 1, using the assumption that
the only source tentacle of each hyperedge is implicitly labeled by self.

We shall freely use the following obvious abbreviations for graph formulae

∀x : T . φ � ∀x . type(x) = T ⇒ φ

∃x : T . φ � ∃x . type(x) = T ∧ φ
x.attr = y � x.attr = y.self

and, in any context where a graph formula is expected,

x.attr � x.attr = true.self
¬(x.attr) � x.attr = false.self

where the constants true and false are interpreted over the (unary) hyperedges
encoding the booleans, which we assume to be included in every instance graph.

3.2 Introducing a Temporal Dimension

The behavioral logic for GTSs, called μL2, is a variant of the propositional
μ-calculus where propositional symbols range over formulae from L2.

Definition 2 (Logic Over GTSs). The syntax of μL2 formulae is given by

f ::= A | Z | �f | �f | ¬f | f1 ∨ f2 | f1 ∧ f2 | μZ.f | νZ.f
where A ranges over closed formulae in L2 and Z ∈ Z are proposition variables.

The formulae are evaluated over a graph transition system T = (Q,→), i.e., a
transition system where the set of states Q consists of (isomorphism classes of)
graphs. This can be thought of as the abstract representation of the behavior of
a graph grammar G: states in Q are (isomorphism classes) of graphs reachable
in G and two states q1 and q2 are related, i.e., q1 → q2, if q2 is reachable from
q1 via a rewriting step in G.

Intuitively, an atomic proposition A holds in a state q if q |= A according to
the satisfaction relation of the previous section. A formula �f / �f holds in a
state q if some / any single step leads to a state where f holds. Note that (as
in [19]) the operators � and � only refer to the next step and not (as defined

28 P. Baldan, A. Corradini, and F. Gadducci

elsewhere) to the whole computation. The connectives ¬,∨, ∧ are interpreted
in the usual way. The formulae μZ.f and νZ.f represent the least and greatest
fixed point over Z, respectively. When a transition system T has a distinguished
initial state q0, we say that T satisfies a (closed) formula f , written T |= f , if
the initial state q0 of T satisfies f . Since the logic is classical, � and ν could be
defined in terms of � and μ.

Since properties of the form “eventually φ”, i.e., μZ.(φ ∨ �Z), and “always
φ”, i.e., νZ.(φ ∧ �Z), will be often used, we introduce the abbreviations

�∗φ � μZ . (φ ∨ �Z)
�∗φ � νZ . (φ ∧ �Z)

3.3 Specifying Some Properties of the Airport Scenario

In this section we discuss how some properties concerned with the Airport Case
Study can be modeled in our logic. As mentioned before, the main limitation of
the logic μL2 resides in its propositional nature which prevents from describing
the evolution of an object in time. We briefly discuss how this limitation can be
overcome by considering a non-propositional extension of the temporal logic.

Using the Logic μL2. The logic μL2 can be used to express properties about
the structure of system state, possibly at different instants.

– The plane leaves only if all passengers are aboard
Fixed an edge pl : Plane representing a plane, the formula

φ(pl) � ∃p:Passenger . (∃tk :Ticket . (p.ticket = tk ∧ tk .plane =
pl ∧ tk .checked ∧ p.atLoc �= pl))

means that there is a passenger p having a ticket tk associated with the
plane pl , the ticket is checked but the passenger is not aboard. Hence the
desired property can be expressed by saying that this can never happen for
any plane which is on air, i.e., such that its atLoc attribute is null

�∗(∀pl :Plane . (pl .atLoc = null ⇒ ¬φ(pl)))
– A passenger can eat only on air

This property is expressed by the formula:

�∗(∀p:Passenger .∀pl :Plane . ((p.eat ∧ p.atLoc = pl) ⇒ pl .atLoc = null))

which says, assuming the existence of a tentacle eat, that it is always true
that if a passenger is eating on a plane, then the plane is flying.

The validity of the above formulae over a finite-state system, like the Airport
Case Study with a given initial state, can be checked by using a technique based
on the unfolding semantics of GTSs and inspired to the approach originally
developed by McMillan for Petri nets [20]. Recall that the unfolding construction
for GTSs produces a structure which fully describes the concurrent behavior of

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 29

the system, including all possible steps and their mutual dependencies, as well
as all reachable states. However, the unfolding is infinite for non-trivial systems,
and cannot be used directly for model-checking purposes. An algorithm proposed
in [4] allows for the construction of a finite initial fragment of the unfolding of
the given system which is complete, i.e., which provides full information about
the system as far as reachability (and other) properties are concerned. Once it
has been constructed, the prefix can be used to verify properties of the reachable
states, expressed in the logic L2. This is done by exploiting both the graphical
structure underlying the prefix and the concurrency information it provides.

We mention that approximated techniques, also based on the unfolding se-
mantics of GTSs, are available for systems which are not finite-state. In this
case, finite under- and over-approximations of the unfolding can be constructed,
which are used to check properties of a graph transformation system, like safety
and liveness properties, expressed in suitable fragments of μL2 [5].

A More General Logic. By experimenting with the Airport Case Study, it
turns out that some interesting properties of the system cannot be expressed in
μL2 essentially because of its propositional nature. Take, for instance, the prop-
erty “All boarded passengers arrive at destination”. The corresponding formula
should say that it is always true that, given any passenger, if in a certain state
the passenger is boarded then later, eventually the passenger will arrive at its
destination. This formula would have the shape

�∗(∀p:Passenger . p is boarded ⇒ �∗(p at destination))

which is not expressible in μL2 due to the presence of the modal operator “�∗”
in the scope of the quantifier “∀”.

The problem can be overcome by considering a more general,
non-propositional temporal graph logic, where quantifiers and temporal oper-
ators can be interleaved. A possible syntax is given below, where the operators
�∗ and �∗ are taken as primitive.

F ::= x = y | x.attrx = y.attry |
type(x) = � | x ∈ X | (Predicates)
F ∨ F | F ∧ F | F ⇒ F | ¬F | (Connectives)
∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)
�∗F | �∗F (Temporal Operators)

As before attrx , attry belong to a fixed set of attribute names, and x, X are
first- and second-order variables, ranging over edges and set of edges, respec-
tively.

The semantics of such logic can be defined by mimicking what is done, e.g.,
for first-order or second-order modal and temporal logics (see [16], or the more
recent [9], where a graph logic is considered). Roughly, the logic is interpreted
over a Kripke structure or a transition system where states are (first- or second-
order) models. Since the logic allows to track the evolution of an individual,
when a state q1 can evolve to q2, there must exist an explicit relationship among
the elements of the models underlying such states.

30 P. Baldan, A. Corradini, and F. Gadducci

More precisely, our logic could be interpreted over an extended graph tran-
sition system (Q,F), with Q a set of graphs and F a set of triples (q1, f, q2),
where q1, q2 are states in Q and f : q1 → q2 is a partial graph morphism. The
presence of a triple (q1, f, q2) intuitively means that the graph q1 can evolve to
q2. The function f relates any item in the graph q1 which is not deleted by the
rewriting step to the corresponding item in q2.

By using this extended logic, several properties previously not expressible in
μL2 can now be easily modeled.

– All boarded passengers arrive at destination
This property can be encoded by the following formula

�∗(∀p:Passenger .∀pl :Plane . ((p.atLoc = pl) ⇒ ∃a:Airport . (pl .dest =
a ∧ �∗(p.atLoc = a))))

which says that, in any state, if a passenger p is boarded on a plane pl , whose
destination is airport a, then the passenger p will eventually arrive at a.

– All passengers go on board
This property can be encoded by the following formula

�∗(∀p:Passenger .∀t :Ticket .∀pl :Plane . (p.ticket = t ∧ t.plane = pl ⇒
�∗(p.atLoc = pl)))

which says that, in any state, each passenger with a ticket associated to a
plane pl will eventually board on pl .

– Airports cannot move
This property can be encoded by the following formula

�∗(∀a:Airport .∀x . (a.atLoc = x⇒ �∗(a.atLoc = x)))

which says that an airport which is at some location will always stay there.
– Passengers change airport only by plane

This property can be encoded by the following formula

�∗(∀p:Passenger .∀a1 :Airport . (p.atLoc = a1 ∧ �∗(¬∃pl :Plane . (p.atLoc =
pl)) ⇒ �∗(∀a2 :Airport . ((p.atLoc = a2) ⇒ a2 = a1))))

which says that a passenger which is at an airport a1 and which does not
take any plane will be always in a1 .

– Baggage travels with passengers (each bag with its owner)
This property can be encoded by the following formula

�∗(∀p:Passenger .∀l : Luggage .∀pl :Plane . (p.atLoc = pl ∧ p.luggage = l⇒
�∗(p.atLoc = pl ∧ l.atLoc = pl))

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 31

which says that, in any state, if a passenger p has a luggage l and it boards
on a plane pl then, eventually, also the luggage will be in pl together with
the passenger.

– Passengers change location with their plane
This property is interpreted as “a passenger on a plane will reach the same
destination as the plane itself”. This can be encoded by the following formula

�∗(∀p:Passenger .∀pl :Plane .∀a:Airport . (p.atLoc = pl ∧ pl.dest = a⇒
�∗(p.atLoc = a)))

which says that, in any state, if a passenger p is on a plane pl with destination
airport a then p eventually reaches airport a.

Unfortunately, the unfolding-based verification techniques mentioned for μL2
do not immediately extend to this more general framework. Understanding to
what extent such techniques can be adapted to the new framework is an open
and stimulating direction of further research.

4 Conclusions

We presented a general approach to the specification and verification of systems
modeled using UML diagrams, interpreted as graph transformation systems.
More precisely, we discussed how to interpret instance diagrams as graphs, and
how to implement the activities of an activity diagram as graph transformation
rules. A temporal logic over monadic second-order graph predicates allows for
formalizing relevant properties of the resulting system, and for fragments of such
logic automatic verification techniques are available. The overall approach was
presented quite informally, using a simple case study as running example.

The theoretical foundations of the methodology for verifying graph transfor-
mation systems presented in the second part of the paper are already quite well
developed [3, 4, 5]. The most valuable contribution of this paper, in our view, is
the idea of applying it for the verification of systems synthesized from a UML
specification. This allowed us to identify some weaknesses of the approach, as
described in the previous section, that we intend to address in the next future
by generalizing the verification approach to more expressive logics and to graph
transformation systems with synchronization.

Concerning the modeling of UML diagrams as graph transformation systems,
the informal approach we discussed is clearly very preliminary, as it addresses
only (restricted forms of) two kinds of diagrams. Nevertheless, we are confident,
also on the basis of other contributions concerned with this topic [10, 11, 12, 13,
17, 18], that such an approach can be extended to cover a meaningful part of the
UML. This represents another interesting topic for future research.

References

1. The agile project home page, http://siskin.pst.informatik.uni-muenchen.de/
projekte/agile/, 2004.

32 P. Baldan, A. Corradini, and F. Gadducci

2. L. Andrade, P. Baldan, H. Baumeister, et al. AGILE: Software architecture for
mobility. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Proceedings
of the 16th International Workshop on Recent Trends in Algebraic Develeopment
Techniques (WADT 2002), volume 2755 of LNCS, pages 1–33. Springer, 2003.

3. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In K.G. Larsen and M. Nielsen, editors, Proceedings of the
12th International Conference on Concurrency Theory (CONCUR 2001), volume
2154 of LNCS, pages 381–395. Springer, 2001.

4. P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars:
an unfolding-based approach. In P. Gardner and N. Yoshida, editors, Proceedings
of the 15th International Conference on Concurrency Theory (CONCUR 2004),
LNCS. Springer, 2004.

5. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of the First International Conference on Graph Transformation (ICGT
2002), volume 2505 of LNCS, pages 14–30. Springer, 2002.

6. A. Corradini, R. Heckel, and U. Montanari. Graphical operational semantics. In
A. Corradini and R. Heckel, editors, Proceedings of the ICALP Workshop on Graph
Transformations and Visual Modeling Techniques (GT-VMT 2000), volume 8 of
Proceedings in Informatics, pages 411–418. Carleton Scientific, 2000.

7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation I: Basic Concepts and Double Pushout Ap-
proach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. 1: Foundations. World Scientific, 1997.

8. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol.1: Foundations. World Scien-
tific, 1997.

9. D. Distefano, A. Rensink, and J.-P. Katoen. Model checking dynamic allocation
and deallocation. CTIT Technical Report TR–CTIT–01–40, Department of Com-
puter Science, University of Twente, 2002.

10. G. Engels, J.H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioural diagrams in UML.
In A. Evans, S. Kent, and B. Selic, editors, Proceedings of the Third International
Conference on the Unified Modeling Language (UML 2000), volume 1939 of LNCS,
pages 323–337. Springer, 2000.

11. G.L. Ferrari, U. Montanari, and E. Tuosto. Graph-based models of internetworking
systems. In B.K. Aichernig and T. Maibaum, editors, Formal Methods at the
Crossroads. From Panacea to Foundational Support, volume 2757 of LNCS, pages
242–266. Springer, 2003.

12. M. Gogolla. Graph transformations on the UML metamodel. In A. Corradini and
R. Heckel, editors, Proceedings of the ICALP Workshop on Graph Transforma-
tions and Visual Modeling Techniques (GT-VMT 2000), volume 8 of Proceedings
in Informatics, pages 359–371. Carleton Scientific, 2000.

13. M. Gogolla, P. Ziemann, and S. Kuske. Towards an integrated graph based se-
mantics for UML. In P. Bottoni and M. Minas, editors, Proceedings of the ICGT
Workshop on Graph Transformations and Visual Modeling Techniques (GT-VMT
2002), volume 72 of ENTCS. Elsevier, 2003.

Specifying and Verifying UML Activity Diagrams Via Graph Transformation 33

14. R. Heckel, J.M. Küster, and G. Taentzer. Confluence of typed attributed graph
transformation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozen-
berg, editors, Proceedings of the First International Conference on Graph Trans-
formation (ICGT 2002), volume 2505 of LNCS, pages 161–176. Springer, 2002.

15. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name
mobility. In K.G. Larsen and M. Nielsen, editors, Proceedings of the 12th Inter-
national Conference on Concurrency Theory (CONCUR 2001), volume 2154 of
LNCS, pages 121–136. Springer, 2001.

16. G.E. Hughes and M.J. Cresswell. A new introduction to modal logic. Routledge,
1996.

17. S. Kuske. A formal semantics of UML state machines based on structured graph
transformation. In A. Haeberer, editor, Proceedings of the Fourth International
Conference on the Unified Modeling Language (UML 2001), volume 2185 of LNCS,
pages 241–256. Springer, 2001.

18. S. Kuske, M. Gogolla, R. Kollmann, and H.J. Kreowski. An integrated semantics
for UML class, object and state diagrams based on graph transformation. In
Proceedings of the Third International Conference on Integrated Formal Methods
(IFM 2002), volume 2335 of LNCS, pages 11–28. Springer, 2002.

19. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design, 6:1–35, 1995.

20. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
21. D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and

G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 2: Applications, Languages, and Tools. World Scientific, 1999.

22. J. Rumbaugh, I. Jacobson, and G. Book. The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

Mobile UML Statecharts with Localities�

Diego Latella1, Mieke Massink1, Hubert Baumeister2, and Martin Wirsing2

1 CNR, Istituto di Scienza e Tecnologie dell’Informazione,
Via Moruzzi 1, I56124 Pisa, Italy

{Diego.Latella, Mieke.Massink}@isti.cnr.it
2 LMU, Institut für Informatik, Oettingenstr. 67, D-80538 München, Germany

{Hubert.Baumeister, Martin.Wirsing}@ifi.lmu.de

Abstract. In this paper an extension of a behavioural subset of UML
statecharts for mobile computations is proposed. We study collections
of UML objects whose behaviour is given by statecharts. Each object
resides in a given place, and a collection of such places forms a network.
Objects are aware of the localities of other objects, i.e. the logical names
of the places where the latter reside, but not of the physical name of such
places. In addition to their usual capabilities, such as sending messages
etc., objects can move between places and create and destroy places,
which may result in a deep reconfiguration of the network. A formal
semantics is presented for this mobility extension which builds upon a
core semantics definition of statecharts without mobility which we have
used successfully in several contexts in the past years. An example of
a model of a network service which exploits mobility for resource usage
balance is provided using the proposed extension of UML statecharts.

1 Introduction

Mobility plays a major role in the programming of nowadays network-based ser-
vices. The Unified Modelling Language (UML) is the de facto standard graphical
modelling language for object-oriented software and systems [17]. It has been
specifically designed for visualising, specifying, constructing, and documenting
several aspects of—or views on—systems. In this paper we focus on a behavioural
subset of UML statecharts (UMLSCs) and in particular on a powerful extension
of this notation in order to deal with a notion of mobility which is sometimes
referred to as mobile computation and requires computing elements to be able
to migrate from one node to another within a network [4], as opposed to mobile
computing, where the focus is instead on dynamic communication structures. We
address mobile computing in the context of UMLSCs in a companion paper [12].

In this paper we assume that a system is modelled as a dynamic collection
of (cooperating, autonomous) objects. In order to express mobile computations
we assume that each object is located at exactly one network node, or place as

� This work has been carried out in the context of Project EU-IST IST-2001-32747
Architectures for Mobility (AGILE).

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 34–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Mobile UML Statecharts with Localities 35

we shall call it in the sequel. A network is a collection of places. Note that for
simplicity a network has a flat hierarchy similar to the approach used in KLAIM
[5], that is, places cannot contain places.

The attributes of an object may contain values of basic datatypes, like integer,
boolean e.t.c., references to other objects, and references to network nodes. The
behaviour of an object is given by a UMLSC. Objects can move among places
and objects and places can be created or destroyed.

Objects are not aware of the physical names of places; they make reference
only to logical names, also called localities, which play the same role as symbolic
addresses in the Internet. Consequently, each place is also equipped with an al-
location environment which maps localities to the physical names of places. The
architecture of the network is dynamic and is implicitly defined by the informa-
tion encapsulated in the allocation environments of all the places belonging to
the network; such information collectively defines the set of places each place is
“in touch with”. The choice of objects being unaware of place physical names
has been inspired by the work on KLAIM [5].

Example. Consider a simplified model of a resource based compute server. De-
pending on the resources needed for a computation, the computation should be
performed at different network places or being split among different network
places. Figure 1 shows the class diagram using the stereotype �mobile� intro-
duced in [2] to indicate classes whose objects can move between places.

«signal» result(Result)

«signal» start()

Configurator

Client

Task

complexity() : int

1

1

1 *

*

1

«mobile»

Agent

tmp : Result
l1, l2 : Locality

Server

request(Client,Task)«signal»

1
*

«signal» start()
«signal» compute()
«signal» done()

perform(Task) : Result
«signal» step2()

performPart2(Task,Result) : Result
performPart1(Task) : Result

«signal» stop()

l1, l2 : Locality l1, l2 : Locality

Fig. 1. Class diagram for a simple compute server

The behaviour of the configurator, server, and agents is given by the stat-
echarts in Figs. 2, 3, and 4. The configurator first creates two network places
where the computation should take place (cf. Fig. 2). During the creation of
the network places also two new localities are created that refer to these places
and which are stored in attributes l1 and l2. The configurator then exports the
place where the configurator is located (given by variable atLoc) to the newly

36 D. Latella et al.

created places, i.e. the locality home at the new places refers to the place of the
configurator. Next, the server is created and initialised with the two localities l1
and l2.

When the server receives a request by a client to perform a task, an agent is
created to fulfil the request (cf. Fig. 3). The agent moves to the different network
places depending on the complexity of the computation task (cf. Fig. 4). In case
of a simple task, the agent stays at the place of the server, computes the result of
the task, and sends the result back to client. In case of a more complex task, the
agent first moves to the place referred to by l1, performs the computation there,
and then sends the result back to the client who stayed at the place referred to
by locality home. In the most complex case, the agent first performs part of the
computation at the place referred to by locality l1 and then the second part of
the computation at locality l2 before sending the result to the client at locality
home. After the agent has done its work he destroys itself.

not configured

configured

Configurator

start / l1 := new_pl(); xpt(atLoc,home,l1);

l2 := new_pl(); xpt(atLoc,home,l2);

server := new_ob(Server,[l1:=l1,l2:=l2])

stop / del_ob(server); del_pl(l1); del_pl(l2); del_pl()

Fig. 2. Statechart for class Configurator of Fig. 1

ready

Server

request(c,t) / agent := new_ob(Agent,[client:=c,task:=t,l1:=l1,l2:=l2]);
agent.start

Fig. 3. Statechart for class Server of Fig. 1

In the present paper, we propose a formal operational semantics for the mo-
bility extension of UMLSCs briefly discussed above. The operational semantics
is built upon previous work of Latella et al. on formalising the semantics of
UMLSCs [11, 6], which in turn was inspired by the work of Mikk [16] on Harel
statecharts.

Several other proposals for formal semantics of UMLSCs can be found in the
literature, e.g. [19, 3, 14, 13, 18]. None of these approaches deals with mobility;
we refer to [6] for a comparison with our previous work. An approach similar
to ours is [10] in which ambients [4] are added to Interacting State Machines

Mobile UML Statecharts with Localities 37

ready

simple task

done

complex task 1 complex task 2

step 2

Agent

tmp := performPart1(task);

tmp := performPart2(task,tmp);

start[task.complexity=3] / computestart[task.complexity=1] / compute

done / del_ob()

compute / mv_obj(l1);

step2 / mv_obj(l2);

compute / tmp := performTask(task);

tmp := perform(task);
client@home.result(tmp);
done

compute / mv_ob(l1);

done
client.result(tmp);

step2

done
client@home.result(tmp);

start[task.complexity=2] / compute

Fig. 4. Statechart for class Agent of Fig. 1

(ISMs). The differences are that this approach is not intended to model UMLSCs
and therefore does not deal directly with features of UMLSCs, like composite
states and concurrent substates, and that ISMs have a hierarchical structure
of places while our place structure is flat. Another approach is [8] where UML
state machines with mobility are translated to MTLA formulas [15] to study
refinement of state machines.

Several proposals for extending the UML with mobility and/or agent notions
are present in the literature, e.g. [2, 9, 7, 1]. In [2] a proposal for extending UML
activity diagrams with mobility notions is presented while in [9] mobility in UML
sequence diagrams is addressed. In [7] an extension of UML in order to describe
agent interaction is proposed which does not address mobility explicitly. Mobile
agents in UML are the focus of [1]. All the above mentioned proposals deal with
notational extensions of UML performed mainly by means of UML extension
mechanisms (stereotypes, tagged-values, etc.) and do not address issues of formal
semantics. We are not aware of any proposal for a formal semantics of objects,
object management, mobility and network configuration in the context of UML
statecharts.

The paper is organised as follows: Section 2 briefly addresses the general
framework of our approach, including our modelling assumptions and an informal
introduction of the basic notions of hierarchical automata for UMLSCs. Section 3
describes the kind of actions which can label UMLSCs transitions and the notion
of network specification. The formal semantics is given in Sect. 4 and conclusions
are drawn in Sect. 5. Finally, for the interested reader, the appendix contains
the formal semantics of hierarchical automata.

38 D. Latella et al.

2 Basic Framework

In this section we set the basic framework of our work. In particular we present
a brief description of the modelling assumptions on which we base our approach
and an informal introduction to the basic notions of the computational frame-
work of hierarchical automata, which we use as an abstract syntax for the defi-
nition of UMLSCs semantics. All technical details on hierarchical automata for
UMLSCs can be found in [11, 6] and in the appendix.

2.1 Object Model

In this paper we assume that a system is modelled as a dynamic collection
of (cooperating, autonomous) objects and that the behaviour of each object is
specified by a UMLSC (more than one single object may have its behaviour
specified by the same UMLSC). More precisely, we assume that a networked
system is specified by a static collection {SC1, . . . ,SCc} of UMLSCs. In order to
express mobile computations, we explicitly model network nodes, or places as we
shall call them in the sequel, and we define a network as a collection of places.
The set of places of a network may dynamically change during the evolution of
the network.

Each place has a set of objects residing therein and is uniquely identified
within the network by its physical name. A physical name can be thought of
as an IP address in the context of the Internet. The objects residing within a
place are uniquely identified by their object names within that place. The set of
objects residing in a given place may dynamically change during the evolution
of the network.

Objects cannot directly refer to the places’ physical names; instead, they
use logical names, called localities, which are mapped to physical names by the
allocation environment of the place where the object resides. In addition, each
object may have a private allocation environment. The network structure is not
given explicitly, but implicitly by the information encapsulated in the allocation
environments, which defines the set of places a place is “in touch with”.

The above assumptions are quite realistic and rather common in networked
systems, in particular unawareness of physical names of places. In this choice
we have been inspired by the work on KLAIM [5] of which our model also
shares the flat structure of places. Other proposals, like for instance [4], assume
a hierarchical structure. We choose a flat structure for the sake of simplicity.

2.2 Hierarchical Automata

As briefly mentioned in Sect. 2.1, in our approach, a networked system is specified
by a finite collection of UMLSCs {SC1, . . . ,SCc}. We use hierarchical automata
(HAs) [16] as an abstract syntax for UMLSCs. HAs for UMLSCs have been in-
troduced in previous work of co-authors of the present paper ([11, 6]). In this
section we recall, informally, only the main notions which are necessary for the
understanding of the paper. The reader interested in the detailed formal defi-
nitions concerning UMLSCs, like the definition of the behavioural semantics, is

Mobile UML Statecharts with Localities 39

referred to the appendix. Such definition is essentially an orthogonal extension
of the original formalisation of UMLSCs semantics of [11, 6], where mobility was
not addressed.

Informally, a HA is composed of a collection of simple sequential automata
related by a refinement function which imposes on the HA the hierarchical state
nesting-structure of the associated statechart. Inter-level transitions are encoded
by means of proper annotations in transition labels.

The operational semantics of HAs, which we shall define later on in the
present paper, makes use of what we call the Core Semantics of HAs. The Core

Semantics of a HA H characterises the relation H :: C (ev,β)/(Ac,ξ)−→L C′ with
the following intended meaning: whenever the current state configuration of H
is C, its current variables/values binding is store β, and event ev is fed to H’s
state-machine, the transitions in L may fire bringing H to configuration C′;
Ac is the sequence of actions to be executed—actually an interleaving of the
action sequences labelling the transitions in L—and ξ records the binding of the
parameters occurring in the triggers of such transitions with the corresponding
values in ev.

Thus the role of the Core Semantics is the characterisation of the set of transi-
tions to be fired, their related actions, and the resulting configuration. All issues
of (action) ordering, concurrency, and non-determinism within single statecharts
are dealt with by the Core Semantics. Although essential for the definition of
the formal semantics, all the above issues are technically quite orthogonal to
mobility and dynamic network/object management.

Another issue which deserves to be briefly addressed here is the way in which
we deal with the so called input-queue of UMLSCs, i.e. their “external environ-
ment”. In the standard definition of UML statecharts semantics [17], a scheduler
is in charge of selecting an event from the input-queue of an object, feeding it
into the associated state-machine, and letting such a machine produce a STEP
transition. Such a STEP transition corresponds to the firing of a maximal set
of enabled non-conflicting transitions of the statechart associated to the object,
provided that certain transition priority constraints are not violated. After such
transitions are fired and when the execution of all the actions labelling them is
completed, the STEP itself is completed and the scheduler can choose another
event from a queue and start the next cycle. While in classical statecharts the
external environment is modelled by a set, in the definition of UML statecharts,
the nature of the input-queue of a statechart is not specified; in particular, the
management policy of such a queue is not defined. In our overall approach to
UMLSCs semantics definition, we choose not to fix any particular semantics,
such as set, or multi-set or FIFO-queue etc., but to model the input queue in
a policy-independent way, freely using a notion of abstract data types. In the
following we assume that for set D, ΘD denotes the class of all structures of a
certain kind (like FIFO queues, or multi-sets, or sets) over D and we assume
to have basic operations for manipulating such structures. In particular, in the
present paper, we let Add d D denote the structure obtained inserting element
d in structure D and the predicate (Sel D d D′) state that D′ is the structure

40 D. Latella et al.

resulting from selecting d from D; of course, the selection policy depends on the
choice for the particular semantics. We assume that if D is the empty structure,
denoted by 〈〉, then (Sel D d D′) yields FALSE for all d and D′. We shall often
speak of the input queue, or simply queue, by that meaning a structure in ΘD,
abstracting from the particular choice for the semantics of ΘD.

We shall refer to the set {H1, . . . ,Hc} of HAs associated to SC1, . . . ,SCc.
ConfH will denote the set of all state configurations of HAH and we shall assume
that for every set {H1, . . . ,Hc} of HAs, there exists a distinguished element Cerr
such that Cerr �∈

⋃c
j=1 ConfHj

.

3 Action Language and Network Specifications

In this section we introduce the syntax and informal semantics of HAs transition
actions and triggers. Moreover, we formalise the notion of network specification.

3.1 Actions

The action side of transition t, i.e. AC t, is an action, and its abstract syntax is
shown in Fig. 5. In our extension we will deal with place physical names, place
logical names, object names, method names, and with variables1; moreover, pa-
rameters may occur in method activations. Consequently proper countable, mu-
tually disjoint sets—ZP ,ZL,ZO,ZM , Var, and Par, respectively—are introduced
for them. Moreover we assume that object names form a ZP -indexed family of
disjoint sets.

Ac ::= var := exp | obj@loc1.meth(exp) | mv ob(obj@loc1, loc2) | mv cl(obj@loc1, loc2)
| var := new ob(H0, C0, β0, E0)@loc1 | var := new cl(H0, C0, β0, E0)@loc1

| del ob(obj@loc1) | var := new pl() | del pl(loc) | xpt(loc1, loc2, loc3) | Ac; Ac

where var ∈ Var, exp ∈ Var ∪ Par ∪ ZL, obj ∈ Var ∪ Par, loc, loci ∈ Var ∪ Par ∪ ZL

for i ∈ {1, 2, 3}, meth ∈ ZM , and Var (variable identifiers) including self and atLoc,
Par (parameter identifiers), ZL (place logical names—i.e. localities) including here, and
ZM (method names) are countable, mutually disjoint sets.

Fig. 5. Abstract syntax of actions

In the following we informally describe the meaning of the various actions,
together with simple static semantics constraints. The formal definition of the
action semantics will be addressed later on in the paper while we refrain from
giving a formal definition of the static semantics since the static semantics is not
very relevant for the purpose of the present paper. Consequently we assume that
all variables used in a statechart are declared in the associated object definition
and that all actions are type-correct.

1 We will use “variable” and “attribute” as synonym in this paper.

Mobile UML Statecharts with Localities 41

By var := exp, variable var is assigned the value of exp in the current
store of the object where the action is executed. Only attribute names of the
current object are allowed as variables; i.e. variables can not refer to attributes
of different objects. Of course different objects (or even HAs) can use the same
variable name which will be bound to possibly different values by different local
stores. Reserved, read-only, variables self and atLoc are always bound to the name
of the object in the store of that object, and, similarly, the reserved locality here
is always bound to the physical place name in the allocation environment of that
place.

Action obj@loc1.meth(exp) sends an asynchronous message meth with (op-
tional parameter-)value exp to object obj residing in (the place referred to by)
locality loc1; the following short-hands are provided: obj.meth(exp) is used in-
stead of obj@atLoc.meth(exp) and meth(exp) instead of self.meth(exp).

Action mv ob(obj@loc1, loc2) makes object obj migrate from locality loc1 to
locality loc2—notice that the moved object can also be the object executing the
action, in which case the short-hand mv ob(loc2) can be used.

Action var := new ob(H0, C0,β0, E0)@loc1 creates a new object the behaviour
of which is determined by the HA referred to by H0. The name of the newly
created object will be bound to var in the store of the object executing the ac-
tion, i.e. the creator. The initial configuration C0 must belong to ConfH0 ; for the
specification of the initial store β0 we use the notation [var1 := exp1, . . . , varn :=
expn], where exp1, . . . expn ∈ Var∪Par∪ZL, and var1, . . . , varn ∈ Var\{self, atLoc}
are attribute names of the created object.2 The initial configuration, store, and
input-queue C0,β0, E0 are optional. If absent, the initial configuration indicated
in the definition of the HA referred to by H0 is used for C0 while E0 is empty
and β0 binds only self to the name of the created object and atLoc to the local-
ity where it resides. The newly created object will (initially) reside in locality
loc1. If loc is atLoc or here, the short-hand var := new ob(H0, C0,β0, E0) can be
used.

The references of an object to localities are normally resolved via the al-
location environment of the place where the object resides when the action is
executed which uses such references. Moreover, a closure-like version of object
creation (new cl) and moving (mv cl) actions is provided; the allocation envi-
ronment of the place where the creator resides will be inherited by the cre-
ated object as its private allocation environment; similarly, the allocation en-
vironment of the place where the moved object was residing will be inherited
by the moved object and extended with its private allocation environment, if
any.

By del ob(obj@loc1) an object kills object obj residing in locality loc1—notice
that the object destroyed can also be the object executing the action, in which
case the shorthand del ob() can be used.

2 Notice that in the specification of β0 the creator object will access attributes of the
created object (i.e. var1, . . . , varn); this is the only exception to the local variables
rule mentioned above.

42 D. Latella et al.

An object can create a new place by means of var := new pl(). Variable
identifier var will be bound—in the store of the current object—to the new
locality, which in turn will be bound—in the current allocation environment—to
the physical name of the newly created object.

Similarly place loc1 is destroyed by executing del pl(loc1); the place will be
removed from the network and all the information it contains (objects residing
therein as well as the allocation environment) is lost. The short-hand del pl()
destroys the place where the executing object resides.

By xpt(loc1, loc2, loc3) locality loc2 can be exported to the place referred to by
locality loc3 and get bound, in its allocation environment, to the place physical
name which loc1 is bound to in the allocation environment of the residence place
of the executing object.

Finally, the sequential composition of action(s) Ac1 with action(s) Ac2 is
denoted by Ac1; Ac2

3.2 Triggers

The trigger EV t of transition t must be a method name (meth ∈ ZM) or a
method name with one parameter (meth(x) with x ∈ Par). The trigger has the
usual pattern-matching semantics; the parameter is bound to the input value
when the transition is selected for being fired. It is worth pointing out here that
the UML requires the scope of a parameter to be confined to the single transition
where it occurs as part of the trigger. The restriction to just one parameter is
made only for the sake of notational simplicity.

3.3 Transition Labels and Network Specifications

The concrete syntax for the complete label of a transition t, at the UMLSC level,
will be EV t [G t]/AC t, where the guard [G t] is optional. The treatment of all
optional parts of actions as well as short-hands is assumed to be dealt with at
the static analysis level. We can now formally define network specifications:

Definition 1 (Network Specification). A network specification is composed
of a set {H1, . . . ,Hc} of HAs and an initialisation command (INIT Ac) where
Ac is a (possibly compound) action, as specified in Fig 5.

An example of a network specification is given by the statecharts for Configu-
rator, Server, and Agent of Figs. 2, 3, and 4 from the example in the introduction.
The initialisation actions in this example are:

INIT(l := new pl(); c := new ob(Configurator)@l; c.start).

4 Network Semantics

The operational semantics associates a transition system to a network specifica-
tion. The states of such a transition system correspond to distinct states of the

Mobile UML Statecharts with Localities 43

network. In this section we define the semantics formally. We start with the for-
mal definition of stores and allocation environments. Then we define Network-
(resp. Place-,Object-) States and the transition relation. The definition of the
latter makes use of a function for the semantic interpretation of the actions la-
beling statechart transitions; the remainder of the present section is devoted to
the formal definition of such a function.3

Definition 2 (Stores). A store β is a function β : Var ∪ Par → ZL ∪ ZO ∪
{unbound}, where unbound �∈ ZL ∪ ZO is a distinguished value.

As usual β x = unbound means that x is not bound by β to any value.
The empty store, unit store and store extension operators ([], [x �→ n], and �
respectively) are defined in the usual way:

[] x
Δ= unbound,

for all x ∈ Var ∪ Par

[x �→ n] x′ Δ= if x = x′then n else unbound,
for all x, x′ ∈ Var ∪ Par, n ∈ ZL ∪ ZO

(β1 � β2) x
Δ= if β2 x �= unbound then β2 x else β1 x,

for all stores β1,β2, x ∈ Var ∪ Par

Allocation environments map localities to place physical names:

Definition 3 (Allocation Environments). An allocation environment γ is a
function γ : ZL ∪ {unbound} → ZP ∪ {unbound}. We require that γ unbound =
unbound for every allocation environment γ.

As for stores, we will let [], respectively [l �→ p], denote the empty, respec-
tively unit, allocation environment, and γ1 � γ2 denote the extension of γ1
with γ2, with a little bit of overloading in the notation. For each object, re-
served read-only variables self, atLoc ∈ Var will be bound respectively to the
name of the object and to the distinguished element here ∈ ZL, in its current
store. Similarly, for each place, here will be bound to the place physical name
in its current allocation environment. Finally hereafter ∈ ZP is a distinguished
place name conventionally used in the definition of the semantics of object/place
destruction.

The operational semantics defines how a network may evolve as a consequence
of firing transitions of the statecharts associated to the objects residing in the

3 In the following we shall freely use a functional-like notation in our definitions where
currying will be often used in function application, i.e. f a1 a2 . . . an will be used in-
stead of f(a1, a2, . . . , an) and function application will be considered left-associative;
for function f : X → Y and Z ⊆ X, f Z

Δ= {y ∈ Y | ∃x ∈ Z. y = fx}, dom f
and rng f denote the domain and range of f and f|Z is the restriction of f to Z; in
particular, f \ z stands for f|(dom f)\{z}; for distinct x1, . . . , xn, f [y1/x1, . . . , yn/xn]
is the function which on xj yields yj and on any other x′ �∈ {x1, . . . , xn} yields f x′.

44 D. Latella et al.

places of the network itself. We remind here that, in our approach, the primitive
computational elements are the objects and that their behaviour is specified by
statecharts. The evolution of objects is modelled by their internal state together
with their “physical” position in the network. More specifically, at each stage of
the global computation, each object resides in a specific place of the network and
its internal state is composed by its current configuration—drawn from those of
the statechart specifying its behaviour, its current local store —where the current
values of its attributes (variables) are maintained, the current value of its input
queue, and the current private allocation environment.

The evolution of the network can thus be modelled by means of a transition
system where each state corresponds to a network state and each transition
corresponds to a change of network state operated by firing the transitions of a
STEP of the statechart of an object. In order to make the above notions more
precise we need the definition below, where E ∈ ΘZM∪(ZM×(ZL∪ZO)), i.e. the
elements of input queues are method invocations, with possibly one parameter.
For (m, n) ∈ ZM × (ZL ∪ ZO), we use the more common, “constructor-like”,
syntax m(n).

Definition 4 (Network, Place and Object States). A network state N is
a finite set of place states. A place state P of a network state N is a triple
(p, γ, μ) ∈ N where p ∈ ZP \ {hereafter} is the physical name for P , and is
required to be unique net-wide; γ is the allocation environment of P and μ is the
finite set of object states of P . An object state O of place state P = (p, γ, μ) of
network state N models the state of an object and is a 6-tuple (o,H, λ, C,β, E)
where o ∈ Zp

O is the name of the object and is required to be unique network-wide;
H is the reference to the HA which specifies the behaviour of o and λ (respectively
C,β, E) is the current private allocation environment (respectively configuration,
store, input queue) of o.

It is worth pointing out here that as an obvious consequence of place name
uniqueness within a network state N the latter can be used and manipulated as
a (finite domain) function on ZP such that p ∈ dom N and N p = (γ, μ) if, and
only if (p, γ, μ) ∈ N . Similarly, also μ can be used and manipulated as a (finite
domain) function on Zp

O with o ∈ dom μ and μ o = (H, λ, C,β, E) if, and only if
(o,H, λ, C,β, E) ∈ μ. In the sequel, we assume {unbound, hereafter}∩ (dom N) =
∅ for all network states N and unbound �∈ (dom μ) for all place states (p, γ, μ).

The operational semantics associates a transition system (S,−→,S0) to a
network specification. S is the set of states of such transition system, which
are network states, defined as above. A distinguished network state corresponds
to the initial state S0. Conventionally, such a state consists of the single place
(init pl, [], {(init o, INITHA, [], {1}, [], 〈init ev〉)}) where INITHA is a conventional
HA composed of a single state—1— which is source and target of a single tran-
sition labelled by init ev/as where as is the argument of the INIT initialisation
command.4 The transition relation −→ is defined by means of a logical deduc-

4 It is assumed that init o and init ev do not occur in any network specification.

Mobile UML Statecharts with Localities 45

tion system, and the definition is given in two stages: the Top Rule and the Core
Semantics. The Top Rule is shown in Fig. 6 and in turn uses the Core Semantics,
which has been introduced in Sect. 2. The Top Rule stipulates that in order for
the network to evolve from network state N to state N ′ there must exist an
object o (2nd premise) in a place p of the current network state (1st premise),
the statechart of which—H—can perform a STEP from the (non-error) config-
uration (3rd premise) C to C′ (5th premise) when event ev is selected from its
input queue (5th premise). The STEP transition generated by the Core Seman-
tics is labelled by the set L of the HA transitions which are fired in the STEP,
the pair (ev,β), where β is the current store of o, and the pair (Ac, ξ) where
Ac is a sequence of actions—the actions of the transitions in L—and ξ is the
set of bindings of the parameters occurring in the triggers of such transitions to
the input event ev. Ac is a symbolic representation of transition actions; thus we
need to interpret them. This is achieved by means of the interpretation func-
tion N which actually computes the new network state N ′ (6th premise). N ′ is
computed by applying N [[Ac]] to a network state which is the same as N except
that the new configuration C′ and the remaining input queue E ′ are recorded for
object o. Notice that the store of o is not updated (yet) since the new store will
be (part of) the result of the execution of Ac.

(p, γ, μ) ∈ N
(o, H, λ, C, β, E) ∈ μ
C �= Cerr
Sel E ev E ′

H :: C (ev,β)/(Ac,ξ)−→L C′

N ′ = N [[Ac]] (N [(γ, μ[(H, λ, C′, β, E ′]/o)/p], p) o ξ

N −→ N ′

Fig. 6. Transition relation definition (top rule)

In the following we define the action interpretation function N . Actually N
simply returns the first element of the pair resulting from the application of
function I to the same arguments.

N [[Ac]] (N, p) o ξ
Δ= N ′ where (N ′, p′) = I[[Ac]] (N, p) o ξ

The definition of I uses the following auxiliary functions.

ERR N p o
Δ= N [(γ, μ[(nil, [], Cerr, [], 〈〉)/o])/p],

for all net. states N, p ∈ dom N, o ∈ ZO

ERR N p o is the network state which differs from N only because the erratic
object state (o, nil, [], Cerr, [], 〈〉) is present in place state p.

Function V is defined in the usual way.

46 D. Latella et al.

V[[exp]] β Δ= if exp ∈ Var ∪ Par
then β exp
else exp,
for all stores β,

exp ∈ Var ∪ Par ∪ ZL

new ZP
Δ= a fresh new place physical name p ∈
ZP \ {init pl, hereafter} different from any
place physical name already generated.

new ZL
Δ= a fresh new locality name l ∈ ZL \ {here}

different from any locality textually
occurring in the network specification
or already generated.

new Zp
O

Δ= a fresh new object name o ∈ Zp
O \ {init o}

textually different from any object name
occurring in the network specification
or already generated.

For action Ac, I[[Ac]] is a function which takes a pair (N, p)—where N is a
network state and p ∈ ZP —an object name o ∈ ZO and a parameter binding ξ.
I[[Ac]] (N, p) o ξ is a pair (N ′, p′) where N ′ is the network state resulting from
the execution of the actions Ac and p′ ∈ ZP . I[[Ac]] is defined by induction on
the structure of Ac. In all cases it is first of all required that p ∈ dom N , i.e.
∃γ, μ. (γ, μ) = N p and that o is not erratic, with o ∈ dom μ.

In the following, we list all cases of the definition, together with a short
informal explanation, when necessary.

I[[var := exp]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , n
exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
n = V[[exp]] (β � ξ), n �= unbound
then N [(γ, μ[(H, λ, C,β[n/var], E)/o])/p], p)
else (ERR N p o, p)

Access to an uninitialised variable exp (i.e. V[[exp]] (β � ξ) = unbound) in
an assignment action var := exp brings o to the erratic state, otherwise var is
bound in the store to the value n of exp. Notice that expressions are evaluated—
using function V—in the current store temporarily extended with the parameter
bindings.

I[[obj@loc.meth(exp)]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l, o′, p′, γ′, μ′,H ′, λ′, C′,β′, E ′, m, n
exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,

Mobile UML Statecharts with Localities 47

o′ = V[[obj]] (β � ξ), l = V[[loc]] (β � ξ), p′ = (γ � λ) l,
(γ′, μ′) = N p′, (H ′, λ′, C′,β′, E ′) = μ′ o′,
n = V[[exp]] (β � ξ)
then (N [(γ′, μ′[(H ′, λ′, C′,β′, Add meth(n) E ′)/o′])/p′], p)
else (ERR N p o, p)

In the execution of sending an asynchronous call meth(exp) to object obj@loc,
performed by object o residing in place p of N , it is required that locality
V[[loc]] (β � ξ) = l is bound, in the local allocation environment γ (possibly
extended with the private allocation environment of o if any) to the physical
name p′ of a place where an object named V[[obj]] (β �ξ) = o′ exists. In this case,
meth(V[[exp]] (β � ξ)) is added in the input queue of o′; otherwise o ends up in
the erratic state.

I[[mv ob(obj@loc1, loc2)]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l1, l2, p1, p2, γ1, γ2, μ1, μ2, o
′, p′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1, (γ1, μ1) = N p1,
l2 = V[[loc2]] (β � ξ), p2 = (γ � λ) l2, (γ2, μ2) = N p2,
o′ = V[[obj]] (β � ξ), o′ ∈ (dom μ1),
p′ = if p = p1 , o = o′ then p2 else p
then (N [(γ1, μ1 \ o′)/p1, (γ2, μ2[μ1 o′/o′])/p2], p′)
else (ERR N p o, p)

I[[mv cl(obj@loc1, loc2)]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l1, l2, p1, p2, γ1, γ2, μ1, μ2, μ
′
2o

′, p′,
H ′, λ′, C′,β′, E ′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1, (γ1, μ1) = N p1,
l2 = V[[loc2]] (β � ξ), p2 = (γ � λ) l2, (γ2, μ2) = N p2,
o′ = V[[obj]](β � ξ), o′ ∈ (dom μ1),
(H ′, λ′, C′,β′, E ′) = μ′ o′,
μ′

2 = μ2[(H ′, γ1 � λ′, C′,β′, E ′)/o′]
then (N [(γ1, μ1 \ o′)/p1, (γ2, μ′

2)/p2], p′)
else (ERR N p o, p)

The successful execution of mv ob(obj@loc1, loc2) requires that the object
denoted by obj resides in the place p1 referred to by loc1 and that there is no
object with the same name in the place p2 referred to by loc2. If this is the
case, this object is removed from the residence place p1 and added to the set of
objects of p2, i.e. is moved from p1 to p2. In the case of mv cl, furthermore the
current allocation environment γ1 of p1 is added to the (possibly empty) private
allocation environment of the object. Notice that actions mv ob and mv cl can
be applied also by o to itself, when obj evaluates to o and loc1 refers to p. In this

48 D. Latella et al.

case the residence place of o changes to the value of loc2. We keep track of the
residence of o as it results from the execution of Ac in the second element of the
result of I[[Ac]] (N, p) o ξ. The reader is invited to check how this information is
dealt with in the definition of I[[Ac1; Ac2]].

I[[var := new ob(H0, C0,β0, E0)@loc]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l, o′, p′, γ′, μ′O,O′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr
l = V[[loc]] (β � ξ), p′ = (γ � λ) l, (γ′, μ′) = N p′,
o′ = new Zp′

O ,
O = (H, λ, C,β[o′/var], E),
O′ = (H0, [], C0,β0[o′/self, here/atLoc], E0)
then if p = p′

then (N [(γ, μ[O/o,O′/o′])/p], p)
else (N [(γ, μ[O/o])/p, (γ′, μ[O′/o′])/p′], p)

else (ERR N p o, p)

I[[var := new cl(H0, C0,β0, E0)@loc]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l, o′, p′, γ′, μ′,O,O′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
l = V[[loc]] (β � ξ), p′ = (γ � λ) l, (γ′, μ′) = N p′,
o′ = new Zp′

O ,
O = (H, λ, C,β[o′/var], E),
O′ = (H0, γ, C0,β0[o′/self, here/atLoc], E0)
then if p = p′

then (N [(γ, μ[O/o,O′/o′])/p], p)
else (N [(γ, μ[O/o])/p, (γ′, μ[O′/o′])/p′], p)

else (ERR N p o, p)

The creation new ob of a new object in an existing place referred to by loc
requires the modification of the store of the creator object o in order to bind
variable var to the name o′ of the newly created object. Moreover the new
object is placed in the place referred to by loc. Notice that the initial store of
the new object binds atLoc to here and self to o′. In the case of new cl, the private
allocation environment of the newly created object is initialised to the allocation
environment of the place where the creator resides.

I[[del ob(obj@loc)]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l1, p1, γ1, μ1, o
′, p′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
l1 = V[[loc]] (β � ξ), p1 = (γ � λ) l1, (γ1, μ1) = N p1,
o′ = V[[obj]] (β � ξ),
p′ = if p = p1, o = o′ then hereafter else p

Mobile UML Statecharts with Localities 49

then (N [(γ, μ[(H, λ, C,β \ obj, E)/o])/p, (γ1, μ1 \ o′)/p1], p′)
else (ERR N p o, p)

An existing object obj residing in a place referred to by loc is destroyed by
executing del ob(obj@loc). The result will be that the object will be removed
from the set of objects of loc and variable obj will be unbound after del ob
will have been executed. Notice that if obj@loc is exactly the object which is
executing the action then its residence place changes to hereafter (we remind
the reader that hereafter ∈ (dom N) for no network state N). Notice moreover
that the semantics is undefined if action del ob occurs in Ac but not as its last
element.

I[[var := new pl()]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E ,O, l, p′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr,
l = new ZL, p′ = new ZP ,
O = (H, λ, C,β[l/var], E)
then (N [(γ[p′/l], μ[O/o])/p, ([here �→ p′], ∅)/p′], p)
else (ERR N p o, p)

The successful execution of var := new pl() creates a new place where here
is bound to its physical name by its (otherwise empty) allocation environment.
Moreover, a new locality is bound to such physical name in the allocation en-
vironment of the place where the executing object resides and such locality is
bound to variable var in the store of the object.

I[[del pl(loc)]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l, p′, p′′

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr
l = V[[loc]] (β � ξ), p′′ = (γ � λ),
p′ = if p = p′′ then hereafter else p
then ((N [(γ \ l, μ[(H, λ, C,β \ loc, E)/o])/p]) \ p′′, p′)
else (ERR N p o, p)

The interpretation of place destruction (del pl) should be clear to the reader;
the only exception is when the object executing it destroys the place where it
resides. Notice that the semantics is undefined if action del pl occurs in Ac but
not as its last element.

I[[xpt(loc1, loc2, loc3]] (N, p) o ξ
Δ=

if γ, μ,H, λ, C,β, E , l1, l2, l3, p1, p3, γ3, μ3

exist such that
(γ, μ) = N p, (H, λ, C,β, E) = μ o, C �= Cerr
l1 = V[[loc1]] (β � ξ), p1 = (γ � λ) l1,
l2 = V[[loc2]] (β � ξ),

50 D. Latella et al.

l3 = V[[loc3]] (β � ξ), p3 = (γ � λ) l3,
(γ3, μ3) = N p3, l2 �∈ dom γ3
then (N [(γ3[p1/l2], μ3)/p3], p)
else (ERR N p o, p)

I[[Ac1; Ac2]] (N, p) o ξ
Δ=

I[[Ac2]] (I[[Ac1]] (N, p) o ξ) o ξ

The semantics of xpt and sequentialization is self-explanatory.

5 Conclusions

In this paper, UML statecharts have been extended with a notion of mobility.
In particular mobile computation, where computational units migrate from one
node to another within a network has been considered, as opposed to mobile
computing, which addresses dynamic communication structures [12].

A formal operational semantics for the extended notation has been provided
which covers all major aspects of UML statecharts—like state hierarchy, inter-
level transitions, a parametric treatment of transition priority and input queue,
intra- and inter- statechart concurrency, and run-to-completion. Furthermore, it
includes dynamic object management, i.e. object creation and object destruction,
for objects (the behaviour of which is) specified by statecharts; finally notions
specific to dynamic network management are addressed: network places, network
architecture management, and mobility (i.e. object migration).

An example of a model of a network service which exploits mobility for re-
source usage balance has been provided using our mobile extension of UMLSCs.

We are not aware of any proposal in the literature which combines all the
above mentioned issues in a single formal framework which is moreover com-
pletely compatible and consistent with other “views” and extensions of UML
statecharts, like testing theories, stochastic behaviour modelling, and analysis
and LTL/BTL model-checking.5

The space of network places is flat, which is similar to that of KLAIM [5].
Other proposals, like for instance [4, 10], assume a hierarchical structure for
the place space. We chose a flat approach mainly for the sake of simplicity. A
hierarchical place structure would open the way toward mobility of places and,
since mobility is part of computation and objects are the computational units,
this would bring to the blurring of the conceptual difference between objects
and places. In addition, the conceptual difference between physical names and
localities would need to be revisited. We leave all the above issues for further
study.

The impact of our extension on the UML meta model—e.g. what additional
meta classes are needed and whether these can be introduced by stereotypes or
not—is also left for future study.

5 Papers describing the above mentioned issues can be found at: http://fmt.isti.cnr.it.

Mobile UML Statecharts with Localities 51

Another issue for further study is the integration of the mobile computing
approach proposed in [12] with the mobile computation one proposed in the
present paper, as well as the interplay between mobile computing and mobile
computation in a framework where also place mobility is considered, as briefly
mentioned above. Finally, we are interested in developing useful theories for the
extension we proposed in the present paper, like, e.g. access control and security,
in a similar way as in [5].

References

1. B. Bauer, J. Müller, and J. Odell. Agent UML: A Formalism for Specifying Mul-
tiagent Interaction. In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented
Software Engineering, volume 1957 of Lecture Notes in Computer Science, pages
91–103. Springer-Verlag, 2001.

2. H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing. Extending Activity
Diagrams to Model Mobile Systems. In M. Aksit, M. Mezini, and R. Unland,
editors, Objects, Components, Architectures, Services, and Applications for a Net-
worked World., volume 2591 of Lecture Notes in Computer Science, pages 278–293.
Springer-Verlag, 2002.

3. J. Broersen and R. Wieringa. Interpreting UML-statecharts in a modal μ-calculus.
Unpublished manuscript, 1997.

4. L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, FoSSaCS’98, vol-
ume 1378 of Lecture Notes in Computer Science, pages 140–145. Springer-Verlag,
1998.

5. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A kernel language for agents
interaction and mobility. IEEE Transactions on Software Engineering, 24(5):315–
329, 1998.

6. S. Gnesi, D. Latella, and M. Massink. Modular semantics for a UML Statechart
Diagrams kernel and its extension to Multicharts and Branching Time Model
Checking. The Journal of Logic and Algebraic Programming. Elsevier Science,
51(1):43–75, 2002.

7. C. Klein, A. Rausch, M. Sihling, and Z. Wen. Extension of the Unified Modeling
Language for mobile agents. In K. Siau and T. Halpin, editors, Unified Model-
ing Language: Systems Analysis, Design and Development Issues, chapter 8. Idea
Group Publishing, Hershey, PA and London, 2001.

8. Alexander Knapp, Stephan Merz, and Martin Wirsing. On refinement of mobile
UML state machines, 2004. to appear in Proc. AMAST 2004.

9. P. Kosiuczenko. Sequence Diagrams for Mobility. In J. Krogstie, editor, MobIMod
2002, volume XXXX of Lecture Notes in Computer Science. Springer-Verlag, 2003.
(To appear).

10. A. Kuhn and von Oheimb D. Interacting state machines for mobility. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of
Lecture Notes in Computer Science, pages 698–718. Springer-Verlag, 2003.

11. D. Latella, I. Majzik, and M. Massink. Towards a formal operational semantics of
UML statechart diagrams. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors,
IFIP TC6/WG6.1 Third International Conference on Formal Methods for Open
Object-Oriented Distributed Systems, pages 331–347. Kluwer Academic Publishers,
1999. ISBN 0-7923-8429-6.

52 D. Latella et al.

12. D. Latella and M. Massink. On mobility extensions of UML Statecharts; a prag-
matic approach. In E. Najm, U. Nestmann, and P. Stevens, editors, Formal Meth-
ods for Open Object-Based Distributed Systems, volume 2884 of Lecture Notes in
Computer Science, pages 199–213. Springer-Verlag, 2003.

13. J. Lilius and I. Paltor Porres. Formalising UML state machines for model checking.
In R. France and B. Rumpe, editors, UML’99 - The Unified Modeling Language.
Beyond the Standard., volume 1723 of Lecture Notes in Computer Science, pages
430–445. Springer-Verlag, 1999.

14. J. Lilius and I. Paltor Porres. The semantics of UML state machines. Technical
Report 273, Turku Centre for Computer Science, 1999.

15. S. Merz, M. Wirsing, and J. Zappe. A Spatio-Temporal Logic for the Specification
and Refinement of Mobile Systems. In M. Pezzé, editor, Fundamental Approaches
to Software Engineering (FASE 2003), volume 2621 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

16. E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchical automata as model for state-
charts. In R. Shyamasundar and K. Euda, editors, Third Asian Computing Science
Conference. Advances in Computing Sience - ASIAN’97, volume 1345 of Lecture
Notes in Computer Science, pages 181–196. Springer-Verlag, 1997.

17. Object Management Group, Inc. OMG Unified Modeling Language Specification -
version 1.5, 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

18. M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware Systems Modeling. Springer, (1):130–141, 2002.

19. R. Wieringa and J. Broersen. A minimal transition system semantics for
lightweight class and behavior diagrams. In M. Broy, D. Coleman, T. Maibaum,
and B. Rumpe, editors, Proceedings of the ICSE98 Workshop on Precise Semantics
for Software Modeling techniques, 1998.

A Hierarchical Automata

In this section we informally recall some basic notions related to UMLSCs. They
are treated in depth in [11, 6]. We use hierarchical automata (HAs) [16] as the
abstract syntax for UMLSCs. HAs are composed of simple sequential automata
related by a refinement function. In [11] an algorithm for mapping a UMLSC to
a HA is given. Here we just recall the main ingredients of this mapping, by means
of a simple example. Consider the UMLSC of Fig. 7 (). Its HA is shown top on
the bottom of the figure. Roughly speaking, each OR-state of the UMLSC is
mapped into a sequential automaton of the HA while basic and AND-states are
mapped into states of the sequential automaton corresponding to the OR-state
immediately containing them. Moreover, a refinement function maps each state
in the HA corresponding to an AND-state into the set of the sequential automata
corresponding to its component OR-states. In our example (Fig. 7, bottom), OR-
states s0, s4, s5 and s7 are mapped to sequential automata A0, A1, A2 and A3,
while state s1 of A0, corresponding to AND-state s1 of our UMLSC, is refined
into {A1, A2}. Non-interlevel transitions are represented in the obvious way: for
instance transition t8 of the HA represents the transition from state s8 to state
s9 of the UMLSC. The labels of transitions are collected in Table 1; for example
the trigger of t8, namely EV t8, is e2 while its associated action, namely AC t8

Mobile UML Statecharts with Localities 53

s10

s7

s11

s0

s1

s6

s8 s9

s2

s3

e1/f1

f1/r1

e2/e2

e2/e2 a1/r2

r2/a2
e2/e1

f2/- a2/e1

r1/a1 e1/-

s4

s5

s1s2 s3

s6 s7 s8 s9

s10 s11

A0

A1 A2

A3

t1

t2

t3

t4

t5

t11

t7 t9

t10

t6 t8

Fig. 7. A UMLSC and its HA

Table 1. Transition labels for the HA of Fig. 7

t SR t EV t AC t TD t

t1 {s6} r1 a1 ∅
t2 ∅ a1 r2 {s6, s8}
t3 ∅ e1 ε ∅
t4 {s8} r2 a2 ∅
t5 ∅ a2 e1 {s6, s9}
t6 ∅ e1 f1 {s10}
t7 ∅ f1 r1 ∅
t8 ∅ e2 e1 ∅
t9 ∅ f2 ε ∅
t10 ∅ e2 e2 ∅
t11 {s10} e2 e2 ∅

consists in e1. Label e2 can model the activation of a method of an object the
behaviour of which is modeled by the statechart and, respectively, e1 can be the
invocation of a method, which takes place if and when t8 is fired.

An interlevel transition is represented as a transition t departing from (the
HA state corresponding to) its highest source and pointing to (the HA state
corresponding to) its highest target. The set of the other sources, resp., targets,

54 D. Latella et al.

are recorded in the source restriction—SR t, resp. target determinator TD t,
of t. So, for instance, SR t1 = {s6} means that a necessary condition for t1
to be enabled is that the current state configuration contains not only s1 (the
source of t1), but also s6. Similarly, when firing t2 the new state configuration
will contain s6 and s8, besides s1. Finally, each transition has a guard G t, not
shown in this example.

Transitions originating from the same state are said to be in conflict. The
notion of conflict between transitions is to be extended in order to deal with
state hierarchy and a priority notion between conflicting transition is defined.
When transitions t and t′ are in conflict we write t#t′. Intuitively transitions
coming from deeper states have higher priority. For the purposes of the present
paper it is sufficient to say that priorities form a partial order. We let πt denote
the priority of transition t and πt � πt′ mean that t has lower priority than (the
same priority as) t′.

In the sequel we will be concerned only with HAs. In particular, for a given
network specification, we shall make reference to the set {H1, . . . ,Hc} of the
HAs associated to the UMLSCs SC1, . . . ,SCc used in the specification.

A.1 Basic Definitions

The first notion we need to define is that of (sequential) automaton:6

Definition 5 (Sequential Automata). A sequential automaton A is a 4-tuple
(σA, s0A, λA, δA) where σA is a finite set of states with s0A ∈ σA the initial state

6 In the following we shall freely use a functional-like notation in our definitions where:
(i) currying will often be used in function application, i.e. f a1 a2 . . . an will be
used instead of f(a1, a2, . . . , an) and function application will be considered left-
associative; (ii) for function f : X → Y and Z ⊆ X, f Z

Δ= {y ∈ Y | ∃x ∈
Z. y = fx}, dom f and rng f denote the domain and range of f and f|Z is the
restriction of f to Z; in particular, f\z stands for f|(dom f)\{z}; for distinct x1, . . . , xn,
f [y1/x1, . . . , yn/xn] is the function which on xj yields yj and on any other x′ �∈
{x1, . . . , xn} yields f x′; for functions f and g such that for all x ∈ (dom f ∩
dom g) f x = g x holds we will often let f ∪ g denote the function which yields f x
if x ∈ dom f and g x if x ∈ dom g and we extend the notation to n functions in
the obvious way. By ∃1x. P x we mean “there exists a unique x such that P x”.
Finally, for set D, we let D∗ denote the set of finite sequences over D. The empty
sequence will be denoted by ε and, for d ∈ D, with a bit of overloading, we will often
use d also for the unit sequence containing only d; the concatenation of sequence x
with sequence y will be indicated by xy. For sequences x, y and z we let predicate
mrg x y z hold if, and only if z is a non-deterministic merge (or interleaving) of x and
y, that is z is a permutation of xy such that the occurrence order in x (respectively
y) of the elements of x (respectively y) is preserved in z; a possible definition for
mrg is mrg x y z

Δ= ∃w ∈ (D × {1, 2})∗. pr1 w = z ∧ pr1 (only 1 w) =
x ∧ pr1 (only 2 w) = y where pr1 ε

Δ= ε, pr1 (e, j)l Δ= e(pr1 l), only j ε
Δ= ε, and

only j (e, j′)l Δ= (if j = j′ then (e, j) else ε)(only j l); the extension of mrg to n
sequences, mrgn

j=1 xj z, is defined in the obvious way.

Mobile UML Statecharts with Localities 55

λA is a finite set of transition labels and δA ⊆ σA × λA × σA is the transition
relation.

We assume that all transitions are uniquely identifiable. This can be easily
achieved by just assigning them arbitrary unique names, as we shall do through-
out this paper. For sequential automaton A let functions SRC, TGT : δA → σA

be defined as SRC(s, l, s′) = s and TGT (s, l, s′) = s′.
HAs are defined as follows:

Definition 6 (Hierarchical Automata). A HA H is a 3-tuple (F, E, ρ) where
F is a finite set of sequential automata with mutually disjoint sets of states,
i.e. ∀A1, A2 ∈ F. σA1 ∩ σA2 = ∅ and E is a finite set of transition labels; the
refinement function ρ :

⋃
A∈F σA → 2F imposes a tree structure to F , i.e. (i)

there exists a unique root automaton Aroot ∈ F such that Aroot �∈
⋃

rng ρ, (ii)
every non-root automaton has exactly one ancestor state:

⋃
rng ρ = F \{Aroot}

and ∀A ∈ F \ {Aroot}. ∃1s ∈
⋃

A′∈F\{A} σA′ . A ∈ (ρ s) and (iii) there are no
cycles: ∀S ⊆

⋃
A∈F σA. ∃s ∈ S. S ∩

⋃
A∈ρs σA = ∅.

We say that a state s for which ρ s = ∅ holds is a basic state. Every sequential
automaton A ∈ F characterises a HA in its turn: intuitively, such a HA is
composed by all those sequential automata which lay below A, including A
itself, and has a refinement function ρA which is a restriction of ρ:

Definition 7. For A ∈ F the automata and states under A are defined respec-
tively as
A A

Δ= {A} ∪ (
⋃

A′∈
(⋃

s∈σA
(ρAs)

)(A A′)), S A
Δ=
⋃

A′∈A A σA′

The definition of sub-hierarchical automaton follows:

Definition 8 (Sub-hierarchical Automata). For A ∈ F , (FA, E, ρA), where
FA

Δ= (A A), and ρA
Δ= ρ|(S A), is the HA characterised by A.

In the sequel for A ∈ F we shall refer to A both as a sequential automaton
and as the sub-hierarchical automaton of H it characterises, the role being clear
from the context. H will be identified with Aroot. Sequential automata will be
considered a degenerate case of HAs. A central role in UMLSCs is played by
(state) configurations, defined as follows:

Definition 9 (Configurations). A configuration of HA H = (F, E, ρ) is a set
C ⊆ (S H) such that (i) ∃1s ∈ σAroot . s ∈ C and (ii) ∀s, A. s ∈ C ∧ A ∈ ρ s ⇒
∃1s

′ ∈ σA. s
′ ∈ C

A configuration is a global state of a HA, composed of local states of com-
ponent sequential automata. For A ∈ F the set of all configurations of A is
denoted by ConfA. Moreover we will assume that for every set {H1, . . . ,Hc} of
HAs, there exists a distinguished element Cerr such that Cerr �∈

⋃c
j=1 ConfHj

56 D. Latella et al.

Progress rule

t ∈ LEA C β ev
� ∃t′ ∈ T ∪ EA C β ev. πt � πt′

A ↑ T :: C (ev,β)/(AC t,bnd ev (EV t))−→ {t} DST t

Stuttering Rule

{s} = C ∩ σA

ρA s = ∅
∀t ∈ LEA C β ev. ∃t′ ∈ T. πt � πt′

A ↑ T :: C (ev,β)/(ε,[])−→∅ {s}
Composition Rule

{s} = C ∩ σA

ρA s = {A1, . . . , An} �= ∅(∧n

j=1
Aj ↑ T ∪ LEA C β ev :: C (ev,β)/(Acj ,ξj)−→Lj Cj

)
mrgn

j=1Acj Ac ∧ ξ =
⋃n

j=1
ξj ∧ L =

⋃n

j=1
Lj

L = ∅ ⇒ (∀t ∈ LEA C β ev. ∃t′ ∈ T. πt � πt′)

A ↑ T :: C (ev,β)/(Ac,ξ)−→L {s} ∪⋃n

j=1
Cj

Fig. 8. Rules of the Core Semantics

A.2 Core Semantics Definition

The Core Semantics definition is given in Fig. 8
As mentioned before, the Core Semantics definition is very similar to the

one we have used in previous work of ours. Here we give a very brief descrip-
tion with emphasis on those aspects relevant for the purposes of the present
paper and we refer the reader interested in more details to [11, 6]. Intuitively,

A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ models labelled transitions of the HA A, and L
is the set containing the transitions of the sequential automata of A which are

selected to fire. We call
(ev,β)/(Ac,ξ)−→L the STEP-transition relation in order to

avoid confusion with transitions of sequential automata. When confusion may
arise, we call the latter sequential transitions. T is a set of sequential transitions.
It represents a constraint on each of the transitions fired in the step, namely
that it must not be the case that there is a transition in T with a higher priority.

So, informally, A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ should be read as (an object the
behaviour of which is specified by HA) “A, on configuration C, provided with
input event (i.e. method call) ev and the store of which is β can perform L
moving to configuration C′, when required to perform transitions with priorities
not smaller than any in T ; Ac is the sequence of actions to be executed as re-
sult of firing the transitions in L and ξ binds the value carried by ev, if any,
to proper parameters occurring in the triggers of transitions in L”. Set T will
be used to record the transitions a certain automaton can do when considering
its sub-automata. More specifically, for sequential automaton A, T will accumu-
late all transitions which are enabled in the ancestors of A. The Core Semantics
definition makes use of the auxiliary functions defined in Fig. 9. LEA C β ev

Mobile UML Statecharts with Localities 57

is the set of all the enabled local transitions of A in C,β, with ev7. Similarly,
the set of all enabled transitions of A—considered as an HA, i.e. including the
transitions of descendants of A—in C,β, with ev, is EA C β ev.

LEA C β ev
Δ=

{t ∈ δA | {(SRC t)} ∪ (SR t) ⊆ C,
match ev (EV t),
(C, β � (bnd ev (EV t)), ev) |= (G t)}

for all HAs H = (F, E, ρ), A ∈ F, C ∈ ConfH ,
stores β, input events ev

EA C β ev
Δ=⋃

A′∈(A A)
LEA′ C β ev

where:

bnd m m′ Δ=
[]

bnd m(n) m′(x) Δ=
if match m(n) m′(x) then [x �→ n] else []
for all n ∈ ZL ∪ ZO, m, m′ ∈ ZM , x ∈ Par

match m m′ Δ=
(m = m′)

match m(n) m′(x) Δ=
(m = m′), Type[[n]]H = Type[[x]]H
for all n ∈ ZL ∪ ZO, m, m′ ∈ ZM , x ∈ Par

Type[[exp]]H
Δ= the type of expression exp in the context

of (the variables/constants declaration
of the class associated to) HA H.

Fig. 9. Auxiliary functions for the Core Semantics

In the Core Semantics, the Progress Rule establishes that if there is a tran-
sition t of A enabled by event ev in the current configuration C and store β and
the priority of such a transition is ”high enough” then the transition fires and a
new configuration is reached accordingly. The action to be (eventually) executed
is AC t and the parameter binding is generated in the obvious way by means
of function bnd. The Composition Rule stipulates how automaton A delegates
the execution of transitions to its sub-automata (3rd premise) and these tran-
sitions are propagated upward. Notice that for all v, i, j, ξi v �= unbound and

7 (C, β, ev) |= g means that guard g is true for configuration C, store β and input
event ev. Its formalisation is immaterial for the purposes of the present paper. The
definition of Type[[e]]H is part of UML static semantics and here we assume it given.

58 D. Latella et al.

ξj v �= unbound implies ξi v = ξj v = ev. Moreover, different orderings of actions
due to different interleavings of the firing of the transitions in L are captured
by means of predicate mrg (4th premise). Finally, if there is no transition of
A enabled with ”high enough” priority and moreover no sub-automata exist to
which the execution of transitions can be delegated, then A has to ”stutter”,
as enforced by the Stuttering Rule. Notice that stuttering of sub-automata is
propagated upwards by the Composition Rule only if no local transition can be
fired either (last premise of Composition Rule). In the operational semantics

definition of Fig. 6, the simplified notation H :: C (ev,β)/(Ac,ξ)−→L C′ has been

used which stands for H ↑ ∅ :: C (ev,β)/(Ac,ξ)−→L C′.
The following theorem links our semantics to the general requirements set by

the official semantics of UML:

Theorem 1. Given HA H = (F, E, ρ) for all A ∈ F, ev ∈ E, T, L, C,β,Ac the

following holds: A ↑ T :: C (ev,β)/(Ac,ξ)−→L C′ for some C′, ξ iff L is a maximal set,
under set inclusion, which satisfies all the following properties: (i) L is conflict-
free, i.e. ∀t, t′ ∈ L. ¬t#t′; (ii) all transitions in L are enabled, i.e. L ⊆ EA C β ev
; (iii) there is no transition outside L which is enabled and which has higher
priority than a transition in L, i.e. ∀t ∈ L. � ∃t′ ∈ EA C β ev. πt � πt′; and (iv)
all transitions in L respect T , i.e. ∀t ∈ L. � ∃t′ ∈ T. πt � πt′.

Proof. The proof can be carried out in a similar way as for the main theorem of
[6], by structural induction for the direct implication and by derivation induction
for the reverse implication. �

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 59–76, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Communities: Concept-Based Querying for
Mobile Services

Chara Skouteli1, Christoforos Panayiotou1, George Samaras1, and Evaggelia Pitoura2

1 Department of Computer Science, University of Cyprus,
CY-1678 Nicosia, Cyprus

{chara, cs95gp1, cssamara}@cs.ucy.ac.cy
2 Department of Computer Science, University of Ioannina,

GR 45110, Ioannina, Greece
pitoura@cs.uoi.gr

Abstract. In this paper, we consider semantic service discovery in a global
computing environment. We propose creating a dynamic overlay network by
grouping together semantically related services. Each such group is termed a
community. Communities are organized in a global taxonomy whose nodes are
related contextually. The taxonomy can be seen as an expandable, flexible and
distributed semantic index over the system, which aims at improving service
discovery. We present a distributed service discovery mechanism that utilizes
communities for context-based service discovery. To demonstrate the viability
of our approach, we have implemented an infrastructure for supporting
communities as well as a prototype application that utilizes communities.

1 Introduction

Nowadays, a significant amount of data is stored on a variety of small devices, such
as smart phones, palmtops and personal computers. These small devices are inter-
connected, thus composing a global network that is characterized by (i) device
heterogeneity, (ii) large-scale data distribution, (iii) data heterogeneity, (iv) device
mobility, and (v) a variety of communication protocols. Data stored on these small
diverse devices creates what we call a global or universal database. Our goal in the
DBGlobe project is to provide both the theoretical foundations and the system
infrastructure for effectively querying this database [21].

To overcome differences in the communication protocols used by mobile devices
and data and device heterogeneity, we employ a service oriented approach in that data
are wrapped in services [14]. In this paper, we focus on the fundamental issue of how
to efficiently query for services in such a global database. Service discovery in this
dynamic environment, where providers and requestors are mobile, is more exigent
than in the classic mobile environment where only the requestors can change location.
Furthermore, the huge number of available mobile services demands an efficient
service discovery mechanism.

We propose creating a dynamic overlay network above the core system to group
together semantically related services, effectively creating a network of communities.

C. Skouteli et al. 60

Each of these communities is a set of pointers to semantically or contextually related
services that are distributed over the global mobile environment (for example, a
community of weather services, or a community of services provided by PDAs).
Communities are distributed and are effectively organized in a global taxonomy
whose nodes are related contextually. This taxonomy can be seen as an expandable,
flexible and distributed semantic index over the core system, which aims at
decreasing the cost of service discovery. Providing flexible service discovery over
communities allows us to expand the notion of context beyond the usual concept of
location. In our work, a user’s context is a set of mobile services belonging to a
number of different communities. Having the communities managing concept-related
services provides for a more efficient service discovery.

In a nutshell, in this paper, we propose: (i) a semantic grouping of mobile services
over the global computational net, effectively creating a network of communities, and
(ii) a distributed service discovery mechanism that utilizes these communities for
context-based service discovery. We also study two types of context-based queries,
containment and continuous queries that are central in this context. To demonstrate
the viability of our approach, we have implemented the infrastructure for supporting
communities as well as a prototype application that utilizes this infrastructure.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the core system architecture, while Section 3 describes mobile service directory in
terms of communities and presents the types of queries we support. Section 4
describes the taxonomy and community architecture as an overlay network. Section 5
provides examples of query execution using communities. Section 6 presents our
prototype implementation. Section 7 discusses related work and finally, Section 8
presents conclusions and future work.

2 Core System Architecture

DBGlobe is a global data and service management system [21]. It connects a number
of autonomous devices and provides support for describing, indexing and querying
their data and services (Fig. 1). DBGlobe employs a service-oriented approach in that
data are wrapped as services. The mobile devices at the perimeter of the architecture
are called Primary Mobile Objects (PMOs). They may function as service providers
(servers), service requestors (clients) or both. They connect to the DBGlobe system
and possibly directly to each other to exchange data through services. They register
by providing appropriate metadata information depending on their role. Their number
and location may change over time, as new PMOs enter or leave the system and
existing PMOs relocate.

Besides these “walking” miniature databases of PMOs, DBGlobe system
components, dispersed throughout the stationary network, store metadata information
about PMOs, users and services, provide index and directory information, and query
processing capabilities. These components are called Cell Administration Server
(CAS). CASs also provide low-level functionality, such as network connectivity and
mobility support.

Communities: Concept-Based Querying for Mobile Services 61

Fig. 1. The DBGlobe Layer

2.1 Primary Mobile Objects (PMOs)

A Primary Mobile Object (PMO) is any autonomous, electronic device capable of
communicating independently with the CAS via some communication channel. The
basic functionality of a PMO includes the ability to (a) request and retrieve data, (b)
produce and share data, (c) create and publish a service and (d) communicate with a
DBGlobe server and function as a source. We assume that every PMO has built-in a
globally unique identity (like Ethernet adapter addresses or IMEIs in GSM phones)
and possibly incorporates components that can capture context (such as GPS
receivers, digital compasses and temperature sensors). In addition, it may host an
application server (e.g, a web server) for executing services.

2.2 Cell Administration Servers (CAS)

The Cell Administration Servers (CASs) provide the basic DBGlobe functionality,
including: (a) connectivity and addressing scheme, (b) service publication, (c) context
determination support, (d) mobility support, (e) service life cycle tracking, and (f)
service discovery.

We adopt a hybrid (partially ad-hoc) architecture where geographical 2-D space is
divided into adjacent administrative areas (similar to GSM cells) each managed by a
Cell Administration Server (Fig. 2). A network of CASs constitutes the backbone that
makes it possible for the PMOs to communicate and share data and services with each
other. The CASs are interconnected through a network, e.g. the Internet. Although
they can function autonomously, they are also aware of their neighbors (that manage
geographically adjacent cells) and cooperate to increase the range of requests. In our
current design [3], each cell represents the area of coverage of s network access point.
We assume that every PMO (including stationary devices) is associated with at most
one cell at any given time (e.g., by keeping a live connection to the cell’s defining
network access point).

Each CAS can independently manage the PMOs which enter its area of authority.
It keeps track of the PMOs that enter or leave the cell’s boundaries. It stores metadata
describing each PMO, the context and the resources offered and assists the user to
locate services by semantically matching requests with existing service descriptions.
It also provides basic services to visiting PMOs such as network addressing, session
management and positioning. Each cell can support large numbers of PMOs moving

C. Skouteli et al. 62

inside its area and acting as sources or requestors of information. The CAS module
consists of:

Fig. 2. The System Geographical Distribution CAS manage the covered PMOs

1. A service directory that lists all the services offered by PMOs in the cell.
2. A service description repository of the local services
3. A CAS directory, containing addresses of other CASs.
4. A community directory, containing addresses of the available communities
5. A location management sub-system that keep tracks of the location of the

registered to that cell PMOs
6. A device type and a PMO repository containing the list of device types and PMOs

available in the cell and their profiles,
7. A temporal profile manager for storing the connection times of devices,

discovering patterns and estimating probabilities of next appearance. A server can
also keep historical data and compute statistics about their mobility habits to assist
proactive behavior.

8. A service discovery mechanism for locally residing services.

The distributed nature of the system, however, requires an efficient distributed
service discovery mechanism which is maintained collaboratively among the various
CASs. The basic idea is to use a global service director that utilizes a distributed
hierarchical service taxonomy structure to assist the user to locate services by
semantically matching requests with existing service descriptions. This is achieved
using service communities described next.

3 Service Discovery Based on Concepts in Mobile Environment

Most common service discovery approaches are based on service registries that match
service requests with available service descriptions [19]. However, in a global
computing environment, where (i) service providers and requestors are mobile and (ii)
service unavailability (due, for example, to wireless disconnections) occurs
frequently, there is a need for more sophisticated service discovery mechanisms. For
instance, users may want the results of service discovery to be adapted to their current
state and be updated in a continuous fashion, e.g. if a user is driving, she is not able to
type, but still wishes to find with minimum efforts results which are useful to her at
the current time. To achieve this, we need an infrastructure that can collect and
manage context information about the various system entities.

Communities: Concept-Based Querying for Mobile Services 63

Context information is defined as: any information that can be used to characterize
the situation of an entity, where an entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and the application themselves [17]. In the mobile environment, the most
common context information includes location, user preferences, user situation and
device characteristics. This information can be used to filter the results and provide
more accurate and useful services. However, context information alone is not able to
minimize the searching domain; in the case of a distributed system such as DBGlobe,
we need to query and apply the user’s context on all available service directories in
each CAS. To avoid this, we use the notions of concept and communities, which
allow us to contain any query within a concept efficiently and in a distributed manner.

Communities group semantically related services that are distributed over the
network. Which services belong to a particular community (i.e., which services are
semantically similar) is built around the notion of a concept. Concept is a semantic
notion and describes a specific property, for example, “traveling”, “weather” or “taxi
reservation”. Each concept is described through a set of keywords. Then, given a set
of appropriate keywords, the matching concept or concepts (and thus communities),
are identified and the appropriate services are selected. Having the universe of
services divided and grouped into concepts allows a distributed and efficient
implementation. Thus, if we wish to find a “weather” service for Cyprus, we just
forward the query to the “weather” community and filter the results by using the
location context.

3.1 Context Aware Queries

In a mobile environment, where users are moving, it is critical to provide context
aware queries that (a) give concept information in a contained fashion and (b) provide
results in a continuous fashion. Contained queries aim at containing the results usually
within location boundaries (e.g., location-based queries). In our environment,
however, the results are contained around a more general context not just location.
Continuous queries are always active and aim to inform the user whenever the
conditions posted in a query are satisfied (e.g. “Find services which provide videos
from Greece and alert me when a new one appears”).

Definition 1: A Concept Containment Query is a query that contains the results
within the boundaries of a specific contextual concept. The services that are queried
are related to a specific concept. Concept Containment Queries (Qccq) are composed
from concept keywords and context pairs:

Qccq = <Concept{keywords}, Context{(attribute, value)}>

Concept keywords are used to identify the concept and (attribute, value) pairs are
used to define the user context.

As an example, consider the case of a service for sports news. The concept in this
example can be sports; the execution of the query “find me all services which provide
sports news” should return all services which are related with the “sports news”
concept, or a concept that is characterized by both these keywords. Depending on the

C. Skouteli et al. 64

query, the size of the result can be very large. Our goal is to contain the results by
using the context information that characterizes the current environment of the user.
For instance, in this example, if the user carries an iPAQ device, the discovered
services should be suitable for it, that is, an appropriate query can be “find me all
services which provide sport news displayable on an iPAQ PDA”. This is expressed
through the following query: Qccq = <Concept{sports, news}, Context{(device,
iPAQ)}>.

In addition to containment queries, we are also interested in keeping the result of a
query updated as the result set might change due to service and user mobility. This is
essential since services are mobile and dynamic as PMOs may move, join or leave the
system. Continuous queries aim at keeping the results of a query up-to-date. The
ability to satisfy concept containment continuous queries in a global mobile
environment is critical.

Definition 2: Concept containment continuous queries (Qcccq) are containment
queries that notify the user for changes in the result set in a continuous fashion.

Qcccq=< Concept{keyword }, Frequency{types}, Context{(attribute, value)}>

Frequency types define the frequency by which the user should be alerted.
Currently we support the “onFound” and “near by” type. An example concept
containment continuous query is: “Find close by services that provide photos of
Greece displayable on an iPAQ and alert me whenever a new one becomes available”.
This is expressed as <Concept{Greece, photos}, Frequency{onFound},
Context{(location, “current location”), (device, iPAQ)}>. This query alerts the user
whenever a service which provides photos displayable on an iPAQ is near by.

Assuming that concepts are organized in some order, the order of keywords can
direct query processing. Keywords following a concept ordering may improve service
discovery. For example, the query “find me all services which provide sports news
displayable on an iPAQ PDA” should return all services which are related with the
“sports news” concept where the concept “sports news “ is a sub-concept of sports.
An order-preserving query language could indicate this as follows: sports | news.
Other constructs such as “or”, “and” could also be defined. Thus, the query above
would be expressed as: <Concept{sports | news}, Context{(device, iPAQ)}>.

An important issue is how to distribute the service directories so that both
containment and continuous queries are efficiently supported. CASs provide a level of
distribution for the service directories, since each CAS maintains a local directory
with the description of the services provided by the mobile devices (PMOs) in its
coverage. By doing so, we are able to efficiently support location-based queries, that
is, queries with a single location attribute. However, it is not possible to efficiently
support more general concept queries, since a matching service may be registered at
any CAS directory and thus all of them need to be queried. To avoid this overhead,
we need a mechanism that will group services in multiple ways not only based on
their location. To this end, we propose a query mechanism based on virtual
directories, called communities, that cluster similar services. Communities are
interconnected, creating a semantic overlay network that can be used for efficient
service discovery.

Communities: Concept-Based Querying for Mobile Services 65

3.2 Organizing Communities Using Taxonomies

Just having a collection of communities does not entirely solve the problem. We also
need to organize the communities. To do so, we need a way to classify and inter-relate
communities. We assume that communities are described through ontologies.
Ontologies are used to fully describe entities [6, 7, 8, 10, 20], in our case,
communities and services. In order to express such classifications and interrelations,
we use taxonomies whose elements are the aforementioned ontologies.

Table 1. Community Ontology Properties

communityName The name of the community
textDescription A brief description summarizing the concept of the

community
keywordsDescription Keywords used to describe semantically the

community
Parent Reference to the parent community
Children Reference to the children communities

Such taxonomies take the form of a tree (Fig. 3). Each internal node of the tree
corresponds to an ontology that describes a community (Table 1). The node also
refers to its children which are under its contextual umbrella as well as its parent
node. Recursively this leads to a hierarchy of ontologies where each (deeper) level of
the hierarchy provides a more refined and focused description of the concept. Each
leaf of the taxonomy tree contains a subset of the description properties and functional
attributes of the service’s profile [20] that belongs to the (parent) community. This
profile summary can be used to determine whether the service satisfies the query
criteria and also to provide information for accessing the actual service (Table 2).

Given a taxonomy (i.e. a tree structure of concepts) we can run an inquiry for a
specific topic by performing a top down search for matching ontologies within the
taxonomy tree. During search, the parent ontologies are used to narrow down the
contextual domain of the children nodes. In this way, we only get related services. For
instance, we avoid asking for Asian culture services and getting hotel reservation
services; we always get services from the right concept.

Using communities allows queries to run faster. The efficiency comes from the fact
that communities are a collection of pointers to services belonging to a particular
concept which may reside anywhere in the network. The question here is why not
using one centralized unified index instead of communities. The first reason is
scalability. The other one stems from the heterogeneity of the environment. A third
factor is the semantic nature of the required index. We need an index that can give as
the location of a service based on its semantic description, thus complicating the
structure of the index. Finally, as the complexity of the index increases the cost of
updating it becomes prohibiting. Communities, which are in essence a semantic
index, tackle all these problems:

C. Skouteli et al. 66

Table 2. Summary Service Profile Properties

serviceName The name of the service
keywordsDescription A keywords description summarizing semantically

what service offers or what capabilities are being
requested.

providedBy A sub-property of role referring to the service
provider

geographicRadius Geographical scope of the service, either at the
global scale (e.g. e-commerce) or at a regional scale
(e.g. pizza delivery)

Pointer An abstract link to the full service ontology.

− Heterogeneity in the environment does not affect communities as long as we use a
standardized way of describing the available resources/data.

− Communities provide semantic based indexing of services.
− Updating a community (which has much fewer members than a unified index) is

more cost effective. The updates are distributed to a number of communities, a fact
that limits the load on each individual community.

− Communities can relocate as needed, thus providing load balancing.
− The CASs infrastructure provides a local index. That is, it is able to efficiently

support context aware queries based on location, because the notion of location
restricts the number of CASs that we have to contact.

− The ability to distribute communities provides scalability.

Fig. 3. Global Taxonomy of Communities and Services

Organizing the service directory around concepts and communities allows us to
efficiently distribute the directory (i.e., distribute the communities) over the network.

4 Communities as an Overlay Network Over CAS

To implement communities, we introduce the notion of a Community Administrator
Server (CoAS). CoASs are responsible for the creation and management of

Communities: Concept-Based Querying for Mobile Services 67

communities. Each CoAS maintains a community, which groups similar services
provided by different CASs, and it can be located anywhere in the system. As the
CoASs represent all communities, the complete taxonomy of the CoASs can be seen
as an overlay network over the core system of CASs (Fig. 4). This overlay network
instead of grouping services located in the same geographical domain, it groups
services which are semantically related independently of their location. To create the
overlay network of CoAs, each CAS propagates a summary of description ontologies
of the services that it hosts (see Table 2) to the appropriate CoASs. Identifying the
appropriate CoASs is achieved by using routing indexes based on Bloom filters [4]
described in Section 4.2. The complete overlay network of CoASs constitutes a global
distributed taxonomy tree of communities. Figure 4 shows a possible configuration
and distribution of such a network.

4.1 Managing the CoAS Taxonomy Tree

The CoAS topology is a hierarchy of ontologies. For managing this distributed
topology, important operations include (i) updating its content when a new service is
registered to the system or a PMO disconnects and thus its services become
unavailable and (ii) load-balancing the taxonomy when a node/community becomes
overloaded with service descriptions.

Construction: As an initial global taxonomy tree, we use a basic classification of
services taken from Google (e.g. a subset of Google’s classification of urls). Using
this classification we create the initial network of CoASs.

Fig. 4. Distribution of CASs and CoASs

New Service Registration: This operation takes place when a PMO registers its
services to the CAS. The CAS stores locally the service ontology provided by the
user, and propagates the service description to the communities (it could be more than

C. Skouteli et al. 68

one) which share the same concept with the service. Utilizing Bloom filters [4, 5] in
combination with the services’ descriptions and the community concepts allow the
CAS to identify the appropriate CoASs. Deletion of a service is handled in a similar
manner.

Service Unavailability: A service provided by a PMO may become unavailable at
any given time either voluntarily by its owner or because the PMO becomes
unreachable due, for example, to network disconnections. In such cases, we do not
delete the service, so during service discovery we check for the actual service
availability. The CAS is responsible to detect unavailability or availability and
inform the appropriate CoAS.

Service Update: An update operation at the community level takes place only when
the semantic description of the service changes. In such cases, when the service
profile changes, the CAS will propagate the changes only to the communities which
store a summary of the service and only if this summary must be updated. Note that
service mobility does not affect the community taxonomy. This is because location
based queries are handled by the CASs, thus we do not have to update the
communities whenever the PMO that owns the service changes location.

Balancing Communities: In case where a community becomes too large, reducing its
efficiency, it can be split into two sub-communities. To decide which concept should
be used to build the new community, we cluster the existing community and select the
concept of the largest cluster. Two new CoASs are created to manage the new sub-
communities.

Service Discovery: Querying for a service takes place when a CAS forwards a query
to the CoAS that manages the community that serves the concept of the query. The
CoAS is responsible to find all services which satisfy the contextual condition posted
with the query. In Section 5, we present the query mechanism in more detail.

4.2 Using Bloom Filters to Locate a Community

To identify which CoAS match a given query, we use indexes based on Bloom filters.
Bloom filters are compact data structures for probabilistic representation of a set that
supports membership queries, that is queries on whether a given element belongs to a
set. A Bloom filter BF of size m is a vector of m bits. Initially, all m bits are set to 0.
Consider a set A = {a1, a2, …, an} of n elements. A number of k independent hash
functions, h1, h2, …, hk, each with range 1 to m are used as follows. For each
element a ∈ A, the bits at positions h1(a), h2(a), ..., hk(a) of BF are set to 1. Note that
a particular bit may be set to 1 many times. Given a query for an element b, we check
the bits at positions h1(b), h2(b), ..., hk(b). If any of them is 0, then certainly b is not
in the set A. Otherwise we conjecture that b is in the set, although there is a
probability that this is not the case. This is called a false positive. Parameters k and m
can be chosen so that the probability of a false positive is acceptable.

Communities: Concept-Based Querying for Mobile Services 69

Bloom filters are used to determine which CoAS should be updated when a new
service is added, deleted or becomes unavailable from the system. They are also used
to find which CoASs are relevant to a given query. In particular, given a service
description, using Bloom filters, we can efficiently locate the appropriate CoASs.

At each CAS, there is one Bloom filter for each CoAS; we call this filter a
community Bloom filter. Let CBF(A) be the community Bloom filter that corresponds
to CoAS A. To construct the CBF(A), the k hash functions are applied to all concepts
(keywords) that describe community A, and the associated bits of the filter are set to
1. Given a service s, to find the CoASs that match the service s, we apply the hash
functions to each of the keywords that describe the service. For each such keyword of
the service, we apply the hash functions and check which community Bloom filters
match it. A filter matches the service, if all bits at the corresponding positions are set
to 1. The communities that match the service s are the communities whose
community Bloom Filters match all keywords describing the service.

In case that there is order among the keywords that follows the ontology schemas,
we may use a query language that takes advantage of this order. This should most
likely be a query language based on XPath [3] that allows us to exploit the structure
of the schemas as well as their content. To this end, we have introduced multi-level
Bloom filters [5] that extend Bloom filters for supporting the efficient evaluation of
path expressions including partial match and containment queries. Multi-level Bloom
filters are used to represent the CoAS taxonomy. In particular, instead of maintaining
a simple Bloom filter for each CoAS, we maintain a multi-level one.

5 Servicing a Query Via the CoAS Network

In this section, we present how the system supports concept and continuous
containment queries.

5.1 Concept Containment Queries

The query execution steps are performed in collaboration between the CAS and the
CoAS components.

1. A PMO, service or user compose a query by providing the concept keywords and
submit the query to the associated CAS. The order of the keywords corresponds to
the concept hierarchy. The CAS composes the query by appending the context
keywords which define the user current environment. As an example, consider the
following request: “Find a service providing pop music clips for an iPAQ media
player”. This request is formulated as follows:

Qcq=<Concept{music, pop, clip}, Context{(device, iPAQ)}>

2. If the receiving CAS can satisfy the query then it returns the results to the issuing
PMO, service or user and the process terminates (location-based queries might be
satisfied this way). If the request can not be satisfied locally by the CAS, the CAS

C. Skouteli et al. 70

uses the Bloom Filters to identify which community (i.e., CoAS) serves the query
concept, in this example, the community “music clips”. We assume that the
community taxonomy contains such a community. In this case the concept
hierarchy is music | pop | clips; this hierarchy is used to better direct the query to
the appropriate community. In case that there is no community to serve the exact
concept, we search for a community that serves the more general concept, in our
example “music pop” and the keyword “clips” is submitted as a context constraint
in the query. Upon finding the appropriate CoAS, the CAS forwards the query to it.
If there is no community to serve the concept, the request is forwarded to the root
community for a top down search.

3. A CoAS upon receiving a query identifies all matching services. Matching is
performed at a semantics level. All matching services are reported in a list. For the
example query, the resulted list will contain all services which provide pop music
clips currently registered in the CoAS unless other constraints are also imposed.

Example Query 1: “Find all services providing photographs of Parthenon”.
Assuming that there is no community to serve the concept “Photographs of
Parthenon” the keyword Parthenon becomes a context keyword and is used to filter
the services which are registered to the photograph community. To this end, we use a
reserved attribute name, called “concept”. This query is formulated as follows:
Q1 = <Concept{photograph}, Context(concept, Parthenon)}>

5.2 Concept Containment Continuous Queries

These types of queries differ from the previous ones in that they must be stored into
the CoAS. Depending on the frequency condition, the CoAS will periodically push
the results to the issuing PMO. To better understand this mechanism, consider the
following request: “Give me all services providing music clips for an iPAQ device
and alert me when a new one is available”. This request is formulated as follows:

<Concept{music, clip}, Frequency{new, onFound}, Context{(device, iPAQ)}>.

The PMO submits the query to its current CAS. The CAS forwards the query to all
appropriate CoASs, using the mechanism described earlier.

Each CoAS registers the query locally. Whenever a new service is registered to the
CoAS, the CoAS checks whether there is any continuous query whose conditions may
be satisfied by the new service. If this is the case, the query results are updated and
the issuing PMO is notified.

There is an overhead for supporting concept containment continuous queries, since
we need to check whether a new service match any continuous queries registered at
the corresponding CoAS. However, this overhead is small considering the overhead to
provide this capability in the absence of the CoASs. In this case, all CAS would have
to be checked whenever a new service is registered.

Example Query 2: “Give me services providing photographs of Parthenon and alert
me when a new one is available”. This query is expressed as follows:

Communities: Concept-Based Querying for Mobile Services 71

Q2 = <Concept{photograph}, Frequency{new, onFound}, Context{(concept,
Parthenon}>

Example Query 3: “Give me services providing finance services and alert me when a
new one is submitted by the user “xak”. This query must be forwarded to community
managing the concept “Finance” and with context the service provider. This is
expressed as:

Q3 = <Concept{finance}, Frequency{new, onFound}, Context{(provider, “xak”)}>

6 Implementation and Prototype

The core system infrastructure is composed by a set of CASs. These CASs are
distributed across the network and independently manage the PMOs under their area
of coverage. Low level communication between the available CASs is achieved by
using RMI. For extensibility, we also manipulate CASs as web services. The CAS
interface includes methods for (i) registering a new service, (ii) locating a service and
(iii) retrieving context information (e.g. location).

We implemented the Community Administrator Servers (CoASs) on top of the
core system infrastructure. CoASs are also distributed across the network and can be
manipulated as web services. The main system components which have direct access
to the CoASs are the CASs. Communication of these components is achieved either
with RMI or web services technology. The interface provide by a CoAS consists of
the following methods: (i) register a new service, (ii) locate a service, and (iii) get the
results of a continuous query.

Fig. 5. The CAS and CoAS Server Architecture

C. Skouteli et al. 72

6.1 Community Administrator Server (CoAS) Architecture

The components that comprise a CoAS are the following (Fig. 5):
Service Ontology Directory: lists all the service ontologies summaries currently
handled by the specific CoAS.

1. CoAS directory: lists children CoAS.
2. Query executor: the most important component of the CoAS, as it is responsible

for matching an incoming query’s criteria with service describing ontologies. In
effect, it is the context awareness query processor.

3. Concept Alerts Directory: used to better support continuity for incoming queries by
providing triggers for them.

4. CAS Directory: lists all the CAS of the system.

a. Clips of SpotMe Application Running on a Sony Clie : Colleagues displaying

b. Creation of a Concept Containment
Continuous Query

c. View the Results of the Alert

Fig. 6. SpotMe Prototype

Communities: Concept-Based Querying for Mobile Services 73

6.2 SpotMe: A Context Aware Application

One of the main objectives of our infrastructure is to support the development of
context aware applications. To demonstrate the capabilities of our system, especially
distributed service discovery, we implemented a context aware prototype application
called SpotMe on top of the CAS and CoAS infrastructure. The goal of the
application is to create a collaborative environment where groups of users connect to
the system to share their services. The prototype application is web-based and
supports both continuous and containment queries.

Figure 6 exhibits some of the application capabilities. Fig. 6.a shows the basic
screen of the application where a user has organized her friends into groups. As
shown in Fig. 6.c, the user is able to view the local available services; this option
exhibits the infrastructure capabilities to provide location-based queries. Moreover,
the user has the option to register her services and search for services. Figure 6.b
details the search capability where the user selects a list of friends and also submits a
set of keywords which define the concept of the services. A possible concept
containment continuous query example is “Inform me when one of my friends
submits a new financial service” where the concept of this query is “financial” and the
context is the selected list of users. To demonstrate concept containment continuous
queries, the application offers the option to users to be alerted whenever one of their
selected friends registers a related service. Thus, the search in Fig. 6.b is translated to
the query:

<Concept{financial}, Frequency{new, onFound}, Context{(users, friends)}.

The following environment has been used to test the prototype implementation: a
CAS network consisting of three CAS interconnected through the internet. All of
them are also internet gateways, two of them allowing near-by users to access the
network via wifi and one of them via Bluetooth. The initial overlay network of
communities, shown in Fig. 7, is also interconnected through the internet. We used
the following mobile devices: a Sony Clie, a Toshiba and an iPAQ connected via wifi
and Bluetooth. Figure 6.a shows clips of the application’s interface on a Sony clie.

Fig. 7. Initial Community Hierarchy

7 Related Work

GloServ [12] is a service discovery system for a mobile environment that shares same
common design issues with our work. More specifically, GloServ uses a hierarchical

C. Skouteli et al. 74

schema to classify the registered services. Its architecture is similar to DNS in that it
contains root name servers and authoritative name servers that manage information
about services. GloServ classifies the hierarchy of services and establishes RDF
schemas that describe each type of service. The SLM system [18] is another service
discovery architecture that shares some ideas with our approach. The SLM service
discovery system consists of SLM servers, services and SLM clients. An SLM server
is a service information repository, providing SLM clients with access to all available
services. SLM clients can search for services on behalf of end users. The system
adopts a distributed hierarchical tree structure to organize SLM servers which may
physically be located in wide-area networks. Both approaches create a hierarchy
between the directory servers where the services are registered, while, in our approach
the directory servers (CASs) are interconnect in a graph structure; but we provide the
hierarchy of the available services on top of this graph structure. Our approach is
more scalable because when a CAS does not respond, we are still able to find a
service because all services are indexed by the taxonomy tree. Conversely in the case
that a CoAS is not available, the query can be executed by the CAS.

The SCAM [13] context model is based on an ontology which provides a
vocabulary for representing and sharing context knowledge in a pervasive computing
domain, including machine-interpretable definitions of basic concepts in the domain
and relations among them. To capture a great variety of context, they divide a
pervasive computing domain into several sub-domains, e.g., home domain, office
domain, vehicle domain, etc; and define individual low-level ontology in each
domain. The separation of domains reduces the burden of context processing and
makes context interpretation possible on mobile thin clients. The important difference
with our approach and SCAM is that SCAM uses a centralized architecture, OSGi-
compliant, mobile service gateway.

8 Conclusions and Future Work

In this paper, we consider semantic service discovery in a global computing
environment. We described a low-level architecture of directory servers, each one of
which maintains information about the services offered by the devices inside its area
of coverage. We proposed creating a dynamic overlay network above this network of
servers that groups semantically related services, effectively creating a network of
communities. Each community is a set of pointers to semantically or contextually
related services (for example, a community of weather services). Communities are
organized in a global taxonomy whose nodes are related contextually. This taxonomy
can be seen as an expandable, flexible and distributed semantic index over the core
system, which aims at improving service discovery. We also presented a distributed
service discovery mechanism that utilizes these communities for context-based
service discovery. To demonstrate the viability of our approach, we have
implemented the infrastructure for supporting communities as well as a prototype
application that utilizes this infrastructure. As future work, we plan to explore the

Communities: Concept-Based Querying for Mobile Services 75

effectiveness of a query language for managing context. We also plan to study load-
balancing by relocating communities close to their most frequent requestors.

References

1. Samaras,G., Spyrou,K., Pitoura,E., Dikaiakos, M.: Tracker: A Universal Location
Management System for Mobile Agents. Proc. The European Wireless 2002 Conference,
Next Generation Wireless Networks: Technologies, Protocols, Services and Applications,
Florence, Italy (2002) 572–580

2. Bray, T., Paoli , J., Sperberg-McQueen, C. M.: Extensible Markup Language (XML) 1.0
Specifications. World Wide Web Consortium, http://ww.w3.org/TR/Rec-xml

3. XML Path Language (XPath). World Wide Web Consortium, http://www.w3.org/TR/
xpath

4. Koloniari, G., Pitoura, E.: Content-Based Routing of Path Queries in Peer-to-Peer
Systems. EDBT Heraclio Greece (2004) 29–47

5. Koloniari,G., Pitoura, E.: Bloom-Filters for Hierarchical Data, Proceeding of the 5th
Workshop on Distributed Data and Structures (WDAS) (2003)

6. Services Definition Language (WSDL), Web page, http://www.w3.org/TR/WSDL.
7. Ouzzani, M., Benatallah, B., Bouguettaya, A.: Ontological Approach for Information

Discovery in Internet Databases. Distributed and Parallel Databases an International
Journal, Volume 8, Issue 3 (2000) 367–392

8. Levy, A. , Srivastava, D., Kirk., T.: Data model and query evaluation in global information
systems. Intelligent Information Systems, 5(2) (1996)

9. Lee,C., Helal, D.: Context Attributes: An Approach to Enable Context-awareness for
Service Discovery. In the Proceedings of the 2003 Symposium on Applications and the
Internet,(SAINT'03), Orlando, FL, USA, (2003)

10. Pfoser,D., Tryfona, N.,Verykios, V.: Services-Based Data Management in a Global
Computing Environment. Workshops (WISEW'03) Roma (2003) 45-53

11. XML Query (XQuery). World Wide Web Consortium, http://www.w3.org/XML/Query
12. Arabshian ,K., Schulzrinne, H.: GloServ: Global Service Discovery Architecture,

Department of Computer Science, Columbia University, New York (2004)
13. Tao Gu , Xiao Hang Wang , Hung Keng Pung , Da Qing Zhang : A Middleware for

Context-Aware Mobile Services, IEEE Vehicular Technology Conference (VTC Spring
2004), Milan, Italy (2004)

14. http://www.w3.org/2002/ws/
15. http://www.w3.org/2001/04/30-tbl
16. Pitoura,E., Samaras, G., :Locating Objects in Mobile Computing. IEEE Transactions on

Knowledge and Data Engineering Journal (TKDE). Vol. 13, No. 4 (2001) 571–592
17. Dey, A.K. , Abowd, G.D.: Towards a Better Understaning Context and Context-

Awareness. In the Workshop on The What, Who, Where, When, and How of Context-
Awareness, The Hague, The Netherlands (2000)

18. Gu,T., Qian, H. C. ,Yao, J. K., Pung, H. K. :An Architecture for Flexible Service
Discovery in OCTOPUS", Proc. of the 12th International Conference on Computer
Communications and Networks (ICCCN), Dallas, Texas (2003)

19. UDDI: The UDDI Technical White Paper. http://www.uddi.org

C. Skouteli et al. 76

20. DAML-S Coalition:DAML-S Service Description for the Semantic Web, In Proceedings
of The First International Semantic Web Conference (ISWC) Sardinia, Italia (2002)

21. Pitoura,E.,Abiteboul, S., Pfoser, D.,Samaras, G., Vazirgiannis, M., et. al. : DBGlobe: a
Service-Oriented P2P System for Global Computing, SIGMOD Record 32(3) (2003) 77–
82

Towards a Formal Treatment of Secrecy Against
Computational Adversaries

Angelo Troina1, Alessandro Aldini2, and Roberto Gorrieri3

1 Dipartimento di Informatica, University of Pisa,
Via F. Buonarroti 2, 56127 - Pisa, Italy

troina@di.unipi.it
2 Istituto STI, University of Urbino,

Piazza della Repubblica 13, 61029 - Urbino, Italy
aldini@sti.uniurb.it

3 Dipartimento di Scienze dell’Informazione, University of Bologna,
Mura Anteo Zamboni 7, 40127 - Bologna, Italy

gorrieri@cs.unibo.it

Abstract. Polynomial time adversaries based on a computational view
of cryptography have additional capabilities that the classical Dolev-Yao
adversary model does not include. To relate these two different models of
cryptography, in this paper we enrich a formal model for cryptographic
expressions, originally based on the Dolev-Yao assumptions, with com-
putational aspects based on notions of probability and computational
power. The obtained result is that if the cryptosystem is robust enough,
then the two adversary models turn out to be equivalent. As an appli-
cation of our approach, we show how to determine a secrecy property
against the computational adversary.

1 Introduction

The recent literature concerning the analysis of security protocols reveals an in-
creasing interest towards the compatibility problem between the computational
approach, followed by the cryptography community, and the approach based on
the Dolev-Yao model, which is instead followed by the formal methods commu-
nity (see, e.g., [2, 5, 11, 22, 15, 14, 18, 6]). In particular, it has been widely recog-
nized that a sort of computational view of cryptography must be introduced in
the formal approaches to security analysis based on a purely formal treatment
of cryptographic operations. The classical Dolev-Yao model, which is based on
the perfect cryptography assumption and the restricted expressive power of the
adversary [8], favours a convenient application of formal methods that treat cryp-
tographic operations as purely formal. In this view, an encrypted message, which
is a formal expression, can be suitably analyzed through techniques borrowed
from the fields of, e.g., modal logic and process algebra [16, 12, 10, 19, 17, 9]. On
the contrary, such a model does not take into account that the adversary has
(limited) computational resources which can be exploited to obtain data in a

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 77–92, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 A. Troina, A. Aldini, and R. Gorrieri

way that cannot be captured by, e.g., standard inference rules. The adversary
advantage is instead based on notions of probability and computational power.

On the basis of such considerations, we aim at relaxing the strict requirements
of the Dolev-Yao approach to cryptography. In order to overcome the limitations
of such requirements, we take into account the probability for a polynomial
time adversary of attacking with success a message encrypted with a secret
key. While in a Dolev-Yao setting such a possibility is simply disregarded – a
message encrypted with an unknown key is a black box – in a real scenario
an adversary with a suitable knowledge may have a good chance of obtaining
useful information from a ciphertext that, from a purely formal standpoint, is
considered to be a black box. By considering the probability of cryptanalyzing a
ciphertext, we compare cryptographic expressions through a suitable notion of
indistinguishability, which has been introduced in [21]. Such a notion, which is
based on a similarity relation, states whether a polynomial time adversary with
a certain initial knowledge has a non-negligible probability of distinguishing two
different cryptographic expressions. As a simple example, expressions {M}K and
{rubbish}K are almost the same if K is secret and the encryption scheme is ideal
according to a computational view of what, in practice, perfect cryptography
stands for (see, e.g., [2, 11]).

In this paper, we show that the definition of similarity for cryptographic
expressions corresponds to the classical Dolev-Yao based notion of equivalence
in the case a suitably defined encryption scheme is used that, intuitively, turns
out to be robust against any cryptanalysis attack conducted by a polynomial-
time adversary. In practice, the intuition is that if the cryptosystem is robust
enough, then a computational adversary with a limited amount of resources has
the same expressive power of an adversary that does not use cryptanalysis to
obtain data. As an application, we show that our notion of similarity can be used
to determine the secrecy degree of a message within an encrypted expression.

The rest of the paper is organized as follows. First, we describe how we
extended the Dolev-Yao formal model with probabilistic information used to
estimate the probability for a polynomial-time adversary of obtaining meaningful
information from a ciphertext (Sect. 2). Then, we show a similarity relation
that allows cryptographic expressions to be compared from the viewpoint of a
polynomial-time adversary (Sect. 3). Afterwards, we present the main theorem
showing that such a similarity relation corresponds to the equivalence relation
of the Dolev-Yao model in the case the encryption scheme is robust enough
(Sect. 4). As an example, we show an application of such an approach to a
secrecy problem in system security analysis (Sect. 5). Finally, we conclude the
paper by discussing some related work (Sect. 6) and future work (Sect. 7).

2 Equivalence and Computational Adversary

We base our formal model on the Dolev-Yao encryption model defined by Abadi
and Rogaway [2]. In this setting, we formulate an extension of the classical equiv-
alence relation among cryptographic expressions that allows for relating those

Towards a Formal Treatment of Secrecy Against Computational Adversaries 79

expressions that yield the same information obtained with the same probability
even through cryptanalysis attempts. Therefore, we abandon the usual Dolev-
Yao abstraction and we take into account cryptanalysis attacks.

2.1 Setting the Context

As a preliminary to our extension, we now introduce the machinery needed to
compare cryptographic expressions. We use String to denote a finite set of
plaintext messages, i.e. the set of binary strings of a fixed length (ranged over by
m,n, . . .), Keys to denote a fixed, non-empty set of key symbols (ranged over
by K,K ′,K ′′, . . . and K1,K2,K3, . . .), such that Keys and String are disjoint,
and Exp to denote the set of expressions defined by the grammar:

M,N ::= expressions
K key (for K ∈ Keys)
m string (for m ∈ String)
(M,N) pair
{M}K encryption (for K ∈ Keys)

Intuitively, (M,N) represents the pairing of M and N , and {M}K represents
the encryption of M under K via a symmetric encryption algorithm. Pairing
and encryption can be nested, like, e.g., in ({(m,K)}K1 ,K1).

The entailment relation M �→ N says that N can be derived from M . For-
mally, such a relation is inductively defined as the least relation satisfying the
following properties:

M �→M
M �→ N1 ∧ M �→ N2 ⇒M �→ (N1,N2)
M �→ (N1,N2) ⇒M �→ N1 ∧ M �→ N2

M �→ N ∧ M �→ K ⇒M �→ {N}K

M �→ {N}K ∧ M �→ K ⇒M �→ N

In essence, M �→ N expresses what the adversary obtains from M without
any prior knowledge of its content. For instance, ({{K1}K2}K3 ,K3) �→ K3, and
({{K1}K2}K3 ,K3) �→ {K1}K2 , but ({{K1}K2}K3 ,K3) ��→ K1. The entailment
relation models the expressive power of the adversary based on the Dolev-Yao
model and includes all the operations that such an adversary can execute to
construct ciphertexts or extract plaintexts.

Our extension consists in taking into account the possibility for an adversary
of obtaining meaningful information from a ciphertext {M}K without knowing
the key K. To this purpose, we introduce the probabilistic pattern P.p, which
represents an expression P that does not contain undecryptable blocks and is
associated with a parameter p ∈]0, 1], which models the probability of getting
the plaintext contained in P . Formally, we define the set pPat of probabilistic
patterns with the grammar:

80 A. Troina, A. Aldini, and R. Gorrieri

P.p, Q.p ::= probabilistic patterns
K.p key (for K ∈ Keys)
m.p string (for m ∈ String)
(P.p, Q.p).p pair

p ∈]0, 1]

A probabilistic pattern associated to a ciphertext is obtained by substitut-
ing every ciphered block with the corresponding expression in clear associated
with the probability of obtaining information about it. Given a computational
polynomial time adversary A and an initial knowledge G, the probabilistic pat-
tern associated with expression {m}K is expressed in terms of the probabil-
ity of obtaining information about m, denoted by m.pdec({m}K , G). Function
pdec({m}K , G) returns the probability of obtaining meaningful information from
the ciphertext {m}K by exploiting the initial knowledge G. More formally, an
adversary A with polynomially timed resources and knowledge G has a prob-
ability Pr at most equal to the value expressed by pdec of retrieving K from
{m}K :

Pr [K ← A({m}K , G)] ≤ pdec({m}K , G) for all A

Note that the outcome of pdec is a value strictly greater than 0, because, even
if with small probability, an adversary may randomly guess the key. Besides, the
value of pdec depends on the knowledge G exploited to conduct the cryptanalysis
attempt. Intuitively, we could figure out the adversary as an arbitrary (proba-
bilistic) algorithm, executing in polynomial time, that makes computations on
ciphered blocks in order to get information about the ciphering key and the
contained plaintext (see, e.g., [11]). Note that the classical Dolev-Yao adversary
obtains K from {m}K if and only if K can be derived from G: If G �→ K, then
pdec({m}K , G) = 1. On the other hand, in a computational model assuming
ideal encryption [11] or type-0 secure encryption scheme [2], pdec is a negligible
function, as it turns out that the probability of guessing information that cannot
be derived through the Dolev-Yao model of cryptography is negligible. In the fol-
lowing we will consider a formal definition of negligible function and we will show
that if pdec is negligible, then it holds that the expressive power of the compu-
tational adversary is limited by that of the Dolev-Yao adversary and vice versa.

The outcome of function pdec represents the starting point for the compu-
tation of the probability of cracking a ciphered block. Consider, e.g., expres-
sion ({{m}K1}K2 , {(K1,K2)}K). What is the probability of getting information
about m in the case no prior knowledge is available? An immediate answer could
be pdec({{m}K1}K2)·pdec({m}K1)

1, that is the probability of sequentially crack-

1 For the sake of simplicity, we omit the knowledge G whenever either G is equal to
the empty set or the content of G is clear from the context.

Towards a Formal Treatment of Secrecy Against Computational Adversaries 81

ing the two keys K2 and K1. However, we observe that if K is a weak key, then
information about K1 and K2 can be easily derived from {(K1,K2)}K and, as
a consequence, the cryptanalysis of {{m}K1}K2 may be simplified. Hence, the
probability of success may vary according to the strategy adopted by the adver-
sary. By considering the worst case, we always associate to a ciphered block the
maximum probability of getting information about it, i.e. we take into account
the best cryptanalysis strategy from the adversary standpoint. To this end, we
analyze all the possible cryptanalysis paths that the adversary can follow. In the
next section, we describe through an illustrative example the structures and the
functions used to determine the best cryptanalysis strategy [21].

2.2 Cryptanalyzing a Ciphertext

The methodology that aims at turning an expression N into a probabilistic
pattern N.p consists of four steps. In this section we illustrate each step of
the methodology through an illustrative example. We consider the expression
N = ({{m}K1}K2 , {(K1,K2)}K) and we assume that the initial knowledge G
does not allow the adversary to derive any information from N through the
entailment relation.

The first step of our methodology consists in computing the keys that can be
obtained from the expression, possibly with (without) cryptanalysis attempts. In
our example, by hypothesis it is not possible to obtain keys through the entail-
ment relation. In other words, the expression is a black box from the viewpoint
of a classical Dolev-Yao adversary. In fact, we have that K can be derived with
a probability based on pdec({(K1,K2)}K). Through such a single cryptanaly-
sis, the adversary obtains K1 and K2 too. Alternatively, the adversary may
try to obtain K2 by attacking {{m}K1}K2 with a success probability equal to
pdec({{m}K1}K2). Afterwards, {m}K1 may be cracked in a similar way, and so
on. In essence, several different strategies can be adopted to derive the keys con-
tained in N – K,K1, and K2 – from N itself, and each of such strategies must
be evaluated.

Formally, given an expression M and the initial knowledge G, we denote
by pKeysG

M a set of pairs of the form T.p, where T ⊆ Keys is a set of keys
syntactically occurring inM , and p ∈]0, 1] is the probability of retrieving the keys
contained in T through a certain strategy. Set pKeysG

M is generated through
the following two-phase algorithm:

pKeysG
M = {initKeys((M,G)).1};

addKeys((M,G), 1);

In the first phase, pKeysG
M is initialized with the set of keys that can be

derived from M and G without cryptanalysis attempts. Formally, initKeys :
Exp → P(Keys) takes an expression L and returns the set of keys recov-
erable from L through the entailment relation. Hence, initKeys(L) = {K ∈
Keys | L �→ K}. Then, in the second phase, the probabilities of retrieving the
remaining keys contained in M are calculated. Formally, addKeys(H, p), with
H ∈ Exp and p ∈]0, 1], is defined through the following algorithm:

82 A. Troina, A. Aldini, and R. Gorrieri

addKeys(H, p) ::=
∀ {N}K : (H �→ {N}K ∧ H ��→ K) do begin

p′ = p · pdec({N}K ,H)
L = (H,K)
T = {K ∈ Keys | L �→ K}
pKeysG

M = pKeysG
M ∪ {T.p′}

addKeys(L, p′)
end

At each step of the algorithm above, a cryptanalysis is performed that reveals,
with a certain probability, new keys obtained from M . In particular, for each
cryptanalysis strategy, pKeysG

M contains the set of keys violated by following
that strategy and the probability of cracking such keys.

The second step of our methodology consists in computing the maximum
probability of retrieving from an expression a given set of keys by following the
best cryptanalysis strategy. In our example, the maximum probability of guess-
ing K is equal to the probability of cracking {(K1,K2)}K , because this is the
only strategy that can be followed to obtain K. On the other hand, the maxi-
mum probability of guessing K2 is the maximum between pdec({{m}K1}K2) and
pdec({(K1,K2)}K), which are the probabilities associated with the two possible
strategies that can be followed to obtain K2.

Formally, given an expression M , the initial knowledge G, and a set T of
keys included in M , we denote by pGuessG

M (T) the maximum probability of
cracking all the keys in T according to the best cryptanalysis strategy that can
be followed to attack M . Denoted Keys(M) the set of keys occurring in M and
given the set DpGuessG

M
= {T ⊆ Keys | T ⊆ Keys(M)}, we define pGuessG

M :
DpGuessG

M
→]0, 1] as:

pGuessG
M (T) = max{p | J.p ∈ pKeysG

M ∧ T ⊆ J}.

Note that pGuessG
M (∅) = 1 since initKeys((M,G)).1 ∈ pKeysG

M and ∅ ⊆
initKeys((M,G)).

The third step of our methodology consists in computing the maximum prob-
ability of retrieving all the information contained in a ciphertext. In our example,
that means we want to evaluate the maximum probability of getting m, K, K1,
and K2. As it is easy to see, such a probability is equal to pdec({(K1,K2)}K),
because through such a single cryptanalysis it is possible to obtain all the keys
used within N .

Formally, given an expression M and the initial knowledge G, we denote by
pMaxG

M the maximum probability of getting the information contained in M :

pMaxG
M = pGuessG

M (Keys(M)).

The fourth step of our methodology consists in turning each ciphered block
of an expression into a probabilistic pattern. The obtained probabilistic patterns
associate each plaintext with the maximum probability of obtaining it. In our
example, the ciphertext {(K1,K2)}K is turned into the probabilistic pattern

Towards a Formal Treatment of Secrecy Against Computational Adversaries 83

(K1.p,K2.p).p where p = pGuessG
M ({K}) = pdec({(K1,K2)}K) and the cipher-

text {{m}K1}K2 is turned into the probabilistic pattern m.pGuessG
M

({K1,K2}).
Formally, given an expression M , the initial knowledge G, and an expres-

sion M ′ contained in M , we denote by pPG
M (M ′, T) a function that (i) re-

turns in T the set of keys needed to obtain the plaintext contained in M ′

and (ii) associates to such a plaintext the maximum probability of obtaining
it through the best cryptanalysis strategy that can be applied to M . Function
pPG

M : Exp×DpGuessG
M

→ pPat is defined inductively as follows:

pPG
M (K,T) = K.pGuessG

M
(T) (K ∈ Keys)

pPG
M (m,T) = m.pGuessG

M
(T) (m ∈ String)

pPG
M ((N1,N2), T) = (pPG

M (N1, T), pPG
M (N2, T)).pGuessG

M
(T)

pPG
M ({N}K , T) = pPG

M (N, T ′) (T ′ = T ∪ {K})

Finally, given an expression M and the initial knowledge G, the probabilistic
pattern associated to M is given by pPG

M (M, ∅). In the following, we use the
abbreviation pPG

M (with no arguments) to stand for pPG
M (M, ∅).

The values pMaxG
M and pPG

M yield different information that are both mean-
ingful to relate cryptographic expressions. Consider the following expressions:

M = ({m}K , {n}K) and N = ({m}K , {n}K′), with K �= K ′.

which yield the same probabilistic patterns. Indeed 2:

pPM = (m.p̂, n.p̂).1,

where p̂ = pGuessM ({K}) = max{pdec({m}K), pdec({n}K)}. The intuition is
that an adversary can crack M by guessing K, which is used to cipher both
blocks. However, if pGuessM ({K}) = pGuessN ({K}) = pGuessN ({K ′}) we
also have that:

pPN = (m.p̂, n.p̂).1.

Hence, M and N have the same probabilistic pattern, even if to get in clear
the whole expression N an adversary should guess two different keys, namely K
and K ′. Such a difference is captured by the fact that:

pMaxM = pGuessM ({K}) = p̂ �= p̂2 = pGuessN ({K,K ′}) = pMaxN .

Therefore, pMaxG
M is needed to express the overall probability of getting

the whole plaintext, while pPG
M is needed to associate each piece of information

contained in an expression with the probability of getting it in clear.
In the following, we show how the information computed through the method-

ology surveyed above can be exploited to compare cryptographic expressions.

2 We assume an empty knowledge and omit G.

84 A. Troina, A. Aldini, and R. Gorrieri

2.3 Probabilistic Equivalence

Given the expressions M and N and an initial knowledge G, we say that M and
N are probabilistically equivalent (M ≈G N) if they yield the same probabilistic
pattern and if pMaxG

M and pMaxG
N are equal.

Definition 1. M ≈G N ⇔ pPG
M = pPG

N ∧ pMaxG
M = pMaxG

N .

Example 1. Consider the expressions N = ({{m}K1}K2 , {(K1,K2)}K) andM =
({m}K1 , {(K1,K2)}K), and assume an empty initial knowledge. If K is weaker
thanK1, we have that pdec({m}K1) ≤ pdec({(K1,K2)}K) and pGuessM ({K1}) =
pGuessM ({K}) = pdec({(K1,K2)}K). Therefore, given p̂ = pdec({(K1,K2)}K),
we have pPM = (m.p̂, (K1.p̂,K2.p̂).p̂).1. On the other hand, from the previous
examples and from the condition pdec({m}K1) ≤ pdec({(K1,K2)}K), we obtain
the probabilistic pattern pPN = (m.p̂, (K1.p̂,K2.p̂).p̂).1 and, since pMaxM =
pMaxN = p̂, we also obtain M ≈ N . In conclusion, we observe that ciphering
the first block m of N with both keys K1 and K2 is not meaningful, since N is
probabilistically equivalent to an expression where this information is ciphered
with one of those keys only. Indeed, an adversary can gain information about m
by cryptanalyzing the second block {(K1,K2)}K .

3 Indistinguishability

The notion of equivalence presented above is not adequate to state the indis-
tinguishability among cryptographic expressions. On the one hand, it is not
realistic to require that the same ciphered blocks have to be decrypted exactly
with the same probability. On the other hand, it is not worth considering those
blocks that can be decrypted with negligible probability, since essentially they
are almost equivalent to a black box.

In order to relax the notion of equivalence for cryptographic expressions, we
introduce a relation, called ε−probabilistic similarity (≈ε), which (i) approx-
imates the equivalence by introducing a tolerance to small differences of the
probabilistic parameters that are associated with the probabilistic patterns, and
(ii) allows for equating the black box and those ciphertexts that can be decrypted
with a negligible probability.

Given an initial knowledge G, we say that M and N are ε−probabilistically
similar (M ≈G

ε N) if pMaxG
M and pMaxG

N are almost the same up to the toler-
ance ε and ifM and N are ε−compatible according to the notion of compatibility
∼ε specified below.

Definition 2. M ≈G
ε N ⇔ pPG

M ∼ε pP
G
N ∧ |pMaxG

M − pMaxG
N | ≤ ε.

The compatibility relation ∼ε for probabilistic patterns expresses when two
probabilistic patterns are indistinguishable. Formally, it is defined as follows:

Towards a Formal Treatment of Secrecy Against Computational Adversaries 85

P.p ∼ε Q.p′ if p, p′ ≤ ε P.p, Q.p′ ∈ pPat
K.p ∼ε K.p′ if |p− p′| ≤ ε K ∈ Keys
m.p ∼ε m.p′ if |p− p′| ≤ ε m ∈ String
(P.p1 , Q.p2).p3 ∼ε (P ′.p′

1
, Q′.p′

2
).p′

3
if |p3 − p′3| ≤ ε ∧
P.p1 ∼ε P

′.p′
1
∧ Q.p2 ∼ε Q

′.p′
2

P.p1 , Q.p2 , P
′.p′

1
, Q′.p′

2
∈ pPat

Note that two different pieces of information are indistinguishable if they
are associated with probabilistic parameters that are smaller than the given
tolerance ε, i.e. in practice both of them are considered to be a black box.

For instance, according to such a notion of probabilistic similarity, the ex-
pressions M = {m}K and N = {n}K′ are indistinguishable if – given G = ∅,
pPM = m.p1 , pPN = n.p2 , and a fixed threshold ε – the probabilities p1 and p2
are equal or smaller than ε. Also the expressions M = {m}K and N = {m}K′

are indistinguishable if p1 = pdec({m}K) and p2 = pdec({m}K′) are similar (even
if not exactly the same). In practice, if |p1 − p2| ≤ ε, then M ≈G

ε N .

Proposition 1. Given M,N ∈ Exp it holds that:

M ≈G N ⇒ M ≈G
ε N ∀ε ∈ [0, 1[.

Proof. See [21].

Proposition 2. Given M,N ∈ Exp it holds that:

M ≈G N ⇔ M ≈G
0 N.

Proof. A trivial consequence of the definition of compatibility relation.

Finally, note that the case ε = 1 is not considered, since it is trivial to see
that in such a case it follows ∀M,N ∈ ExpM ≈G

1 N .

4 Relating the Probabilistic and the Dolev-Yao Models

In this section we show how our notion of similarity is related to a classical Dolev-
Yao equivalence relation defined in an environment where perfect cryptography
is assumed. In particular, given a notion of ideal encryption, we will show that
two expressions are equivalent within a Dolev-Yao model that relies on perfect
cryptography if and only if the two expressions are probabilistically similar under
the ideal encryption assumption.

4.1 Equivalence Within Perfect Cryptography

We start by introducing a notion of equivalence for cryptographic expressions
that relies on the perfect cryptography assumption. Such a notion is inspired by
that defined in [2]. First, we define a variant of the set of expressions, called Pat,

86 A. Troina, A. Aldini, and R. Gorrieri

which does not contain ciphertexts and includes the new symbol ⊗ (representing
a ciphertext that cannot be decrypted by the adversary).

P,Q ::= patterns
K key (for K ∈ Keys)
m string (for m ∈ String)
(P,Q) pair
⊗ undecryptable text

Intuitively, a pattern is an expression that does not contain encrypted terms
and that may contain some part that an adversary cannot decrypt. Now, we
define a function p that, given a set of keys T and an expression M , computes
the pattern that an adversary can obtain from M if the initial knowledge is the
set of keys T .

p(K,T) = K (for K ∈ Keys)
p(m,T) = m (for m ∈ String)
p((M,N), T) = (p(M,T), p(N, T))

p({M}K , T) =
{
p(M,T) if K ∈ T
⊗ otherwise

Then, given an initial knowledge G, we define function patG(M), which ex-
presses the pattern obtained from an expression M by exploiting the knowl-
edge G, as patG(M) = p(M, initKeys((M,G))). For example, if G is empty,
patG(({{K1}K2}K3 ,K3)) = (⊗,K3).

Finally, given an initial knowledge G, we say that two expressions are equiv-
alent if they yield the same pattern.

Definition 3. M ∼=G N ⇔ patG(M) = patG(N).

For example, if G is empty, we have ({{K1}K2}K3 ,K3) ∼= ({{m}K1}K3 ,K3)
since both expressions yield the pattern (⊗,K3).

4.2 Ideal Encryption

The notion of ideal encryption intuitively assumes that it should be hard for the
adversary to decrypt a message ciphered with an unknown key. In other words,
the probability of breaking an encrypted message that cannot be derived in the
classical Dolev-Yao model should be small. We formalize the concept of small
probabilities by introducing the definition of negligible function (see, e.g., [11]).

Definition 4. A function f : IN → IR is negligible, if for any polynomial q,
∃η0 ∈ IN : f(η) ≤ 1

q(η) ∀η > η0.

Then, the ideal encryption hypothesis assumes that pdec must be a negligible
function.

Towards a Formal Treatment of Secrecy Against Computational Adversaries 87

Definition 5. An encryption scheme is ideal if and only if

∀{N}K ∈ Exp,∀G ∈ Exp : G ��→ K,∀ polynomial q : ∃η0 ∈ IN such that
pdec({N}K , G) ≤ 1

q(η) ∀η > η0.

As a consequence, if the assumption of ideal encryption holds, from the def-
inition above we also have that ∀A and ∀G ∈ Exp : G ��→ K:

Pr[K ← A({N}K , G)] ≤ 1
q(η)

∀η > η0.

By following an approach also used in [22], we show that a result holding in
the perfect cryptography scenario also holds in our probabilistic model (and vice
versa) if the ideal encryption assumption is taken.

Theorem 1. Given M,N ∈ Exp, if the assumption of ideal encryption holds
for a polynomial q and a natural η0, then, for each η > η0:

M ∼=G N ⇔ M ≈G
ε N ∀ε ∈]

1
q(η)

, 1− 1
q(η)

[.

Proof. ⇒) A proof of the statement is in [21].
⇐) The statement derives by structural induction on the expression M and by
observing that, by hypothesis, M ≈G

ε N ⇒ pPG
M ∼ε pP

G
N . In the following, we

denote by TM the set initKeys((M,G)) and by TN the set initKeys((N, G)).

1. pPG
M ∼ε pP

G
N = K.1 K ∈ Keys

⇒
p(M,TM) = p(N, TN) = K ⇒ patG(M) = patG(N) ⇒M ∼=G N

2. pPG
M ∼ε pP

G
N = m.1 m ∈ String

⇒
p(M,TM) = p(N, TN) = m⇒ patG(M) = patG(N) ⇒M ∼=G N

3. pPG
M = P.p ∼ε Q.p′ = pPG

N p, p′ ≤ ε P.p, Q.p′ ∈ pPat
⇒
p(M,TM) = p(N, TN) = ⊗⇒ patG(M) = patG(N) ⇒M ∼=G N

4. pPG
M = (pPG

M (L1, ∅), pPG
M (L2, ∅)).1 ∼ε (pPG

N (L′
1, ∅), pPG

N (L′
2, ∅)).1 = pPG

N ⇒
pPG

M (L1, ∅) ∼ε pP
G
N (L′

1, ∅) ∧ pPG
M (L2, ∅) ∼ε pP

G
N (L′

2, ∅)
⇒ by induction hypothesis
p(L1, TM) = p(L′

1, TN) ∧ p(L2, TM) = p(L′
2, TN) ⇒

p(M,TM) = (p(L1, TM), p(L2, TM)) = (p(L′
1, TN), p(L′

2, TN)) = p(N, TN) ⇒
patG(M) = patG(N) ⇒M ∼=G N

Under the assumption of ideal encryption, the four cases above include all the
interesting situations in which two probabilistic patterns are compatible according
to ∼ε. In particular, the condition |p− p′| ≤ ε is always true if p, p′ �= 1. Indeed,
thanks to the ideal encryption assumption stating that p, p′ ≤ 1

q(η) , if p, p′ �= 1,
we have that p, p′ < ε. Therefore, the three cases K.p ∼ε K.p′ , m.p ∼ε m.p′ and
(P.p1 , Q.p2).p ∼ε (P ′.p′

1
, Q′.p′

2
).p′ collapse into the case P.p ∼ε Q.p′ , p, p′ ≤ ε

(case 3 of the proof of ⇐)), when p, p′ �= 1.

88 A. Troina, A. Aldini, and R. Gorrieri

Finally, note that we did not consider the cases in which P.p ∼ε Q.p′ for some
P,Q ∈ pPat with p = 1 (p �= 1) and p′ �= 1 (p′ = 1). In such cases, the condition
|1−p′| ≤ ε (|1−p| ≤ ε) does not hold, since, by the ideal encryption assumption,
p′ ≤ 1

q(η) (p ≤ 1
q(η)) and, by the premises of the theorem, ε < 1 − 1

q(η) . As
a consequence, it is impossible to find a case in which P.p ∼ε Q.p′ for some
P,Q ∈ pPat with p = 1 (p �= 1) and p′ �= 1 (p′ = 1).

5 Secrecy Against the Computational Adversary

In this section we introduce a notion of secrecy of some information within a
given expression. Consider for example the expression M = ({m}K , {n}′K). We
are interested in evaluating whether the expressionM maintains a given secretm
assuming that the expression G models the actual knowledge of an adversary3.
In particular, we are also interested in evaluating the degree of secrecy of m
within M . Intuitively, we observe that a certain secret m is private in M if
the expression N , obtained by substituting every occurrence of m in M with
m′ �= m, is similar to M . More formally, we provide the following definition.

Definition 6. Given a knowledge modeled by the expression G, a certain secret
α such that α ∈ Keys or α ∈ String, a parameter ε ∈ [0, 1[and an expression
M ∈ Exp such that α occurs in M , we say that α is εG-secret in M iff the
expression N obtained by substituting every occurrence of α in M with the key
K �= α (if α ∈ Keys) or with the string m �= α (if α ∈ String) is such that
M ≈G

ε N .

Intuitively, Definition 6, inspired by [1], states that a certain secret α is private
within an expression M if an adversary is not able to distinguish M from the
expression N obtained by substituting in M every occurrence of α with α′ �= α.
In a sense, that means the adversary is not able to extract α from M with a
probability greater than ε. Therefore, if α is εG-secret in M , we can deduce that
the adversary with knowledge G can extract α fromM with a success probability
equal or smaller than ε.

Example 2. Consider the expression M = ({m}K1 , {K}K2) and a knowledge
G = K1.

On the one hand, we obviously have that m is not εG-secret in M for any
ε ∈ [0, 1[. Given N = ({m′}K1 , {K}K2) we have that M �≈G

ε N , in fact pPG
M =

(m.1,K.p) where p = pdec({K}K2 , (M,G)) = pdec({K}K2 , (N, G)) and pPG
N =

(m′.1,K.p). Since m �= m′ we obviously have that pPG
M �∼ε pP

G
N so that, in

practice, M �≈G
ε N .

On the other hand, we have that K is εG-secret in M for any ε ∈ [p, 1[.
Given N = ({m}K1 , {K ′}K2) we have that M ≈G

ε N for any ε ∈ [p, 1[, in

3 The expression G models, for example, the sequence of messages exchanged within
the network until a certain moment, and the set of keys known by the adversary.

Towards a Formal Treatment of Secrecy Against Computational Adversaries 89

fact pPG
M = (m.1,K.p) and pPG

N = (m.1,K ′.p). Since ε ≥ p we have that the
adversary is not able to distinguishK fromK ′ (pPG

M ∼ε pP
G
N), so that in practice

we have that M ≈G
ε N .

5.1 An Application

We apply the notion of secrecy within an expression in a very simple real case.
Consider a protocol where a server S could be asked to generate a secret key
and then send it back to the entity A that applied the request. The server also
monitors and keeps track of all the messages exchanged in the network.

Assuming that an authentication phase precedes the protocol, we denote with
KSA a key shared between the server S and the entity A. Finally, we use t to
denote a time stamp. The protocol can be described as follows (with the standard
notation A→ B : Msg we denote a message Msg sent by A and received by B):

1. A→ S : {request, A,S, t}KSA

2. S → A : {K,S, A, t}KSA

where K is the secret key generated by the server.
We now translate the messages exchanged by the protocol into cryptographic

expressions, by assuming that KSA,K ∈ Keys and that request, A,S, t cor-
respond to r, a, s, t ∈ String, respectively. Hence, we have that the protocol
exchanges the following expressions:

1. {(r, ((a, s), t))}KSA

2. {(K, ((s, a), t))}KSA

Now, assume that all the messages exchanged in the network are modeled by
the formal expression G. Then, we apply our notion of secrecy within expressions
in order to check whether the expression {(K, ((s, a), t))}KSA

ensures a given
degree ε of secrecy for K. To this end, what the server needs to do is to check
whether K is εG-secret in {(K, ((s, a), t))}KSA

. The parameter ε is fixed by
the server and represents the security threshold needed to guarantee the secure
execution of the protocol. Note that, as the traffic of information within the
network increases and the amount of messages ciphered with the shared keyKSA

gets larger, the server may not guarantee the εG-secrecy anymore. Our notion of
secrecy within expressions is able to capture situations of this kind. Therefore, if
at a certain instant of time K is not εG-secret in {(K, ((s, e), t))}KSA

anymore,
the server may, for example, activate a procedure generating a new shared key
with the entity A and then send the secret to A encrypted with the fresh key.

6 Related Work

The treatment of cryptographic operations within formal models is covered by
a quite large body of literature, but most of these efforts do not consider cryp-
tographic operations in an imperfect cryptography scenario.

90 A. Troina, A. Aldini, and R. Gorrieri

This work represents a step toward the definition of a formal language with
cryptographic primitives and conditional statements for analyzing both unwanted
disclosure of data due to the nature of the protocols and information leakage due
to the nature of the cryptographic means. In the literature, both probability and
computational complexity are studied in formal settings.

Process algebra and computational view of cryptography are combined in [14]
where, in the setting of a subset of asynchronous π-calculus, an asymptotic no-
tion of probabilistic equivalence is defined. The observational equivalence defined
in terms of such a notion can be related to polynomial time statistical tests, i.e.
equivalent processes are indistinguishable from the viewpoint of polynomial time
adversaries. Security is then stated in terms of indistinguishability between the
protocol under analysis and an idealized protocol specification. More recently, a
definition of probabilistic noninterference which includes a computational case
has been defined in [5] in the setting of asynchronous probabilistic reactive sys-
tems. In particular, computational noninterference means that the advantage of
the external observer (which interacts with the system under analysis) for a cor-
rect guess of the interfering adversary behavior is a negligible function. A formal
notion of computational indistinguishability is also defined in [13] on the basis of
a simple model where public outputs are observed in order to infer the content
of secret inputs. Finally, [22] compares the classical Dolev-Yao adversary with
an enhanced computational adversary which can guess the key for decrypting
an intercepted message (albeit only with negligible probability). The two adver-
saries are shown to be equivalent with respect to a secrecy property. Moreover,
in [22] the authors define a function similar to our pdec in order to model the
probability for a computational adversary of guessing a key. However they ab-
stract away from the particular ciphertext in which the key to be guessed is used
as the ciphering key, and from the knowledge the adversary gets. As we do, they
also abstract away from how the probability pdec({m}K) could be computed.

We finally point out that probabilistic notions of security as well as approx-
imate security properties can be found in the literature (see, e.g., [10, 7, 4, 3]),
but they do not relate probability and cryptographic primitives.

7 Conclusion

In this paper we proved that a standard notion of Dolev-Yao adversary equates
the expressive power of a computational adversary in the case ideal encryption is
assumed. This is done in a formal framework where indistinguishability among
cryptographic expressions is defined by means of a notion of probabilistic simi-
larity taking into account computational poly-time adversaries.

The formal comparison among cryptographic expressions and its application
to the verification of security properties represents an important step towards
the definition of a formal framework for modelling cryptographic protocols and
analyzing their robustness against malicious parties. In particular, the robustness
of a system can be evaluated both in terms of absence of (probabilistic) covert
channels and in terms of effectiveness of cryptanalysis attacks. While the first

Towards a Formal Treatment of Secrecy Against Computational Adversaries 91

kind of attack has been deeply analyzed in the literature (see, e.g., [7, 4] and the
references therein), in this paper we concentrated on the second type of security
problem and we proposed an approach, which, as a further line of investigation,
aims at putting the basis for a formal framework where both families of security
flaws can be attacked in an integrated way.

References

1. M. Abadi, A. D. Gordon, “A Calculus for Cryptographic Protocols: The Spi Cal-
culus”, Information and Computation, 148(1):1–70, 1999.

2. M. Abadi, P. Rogaway, “Reconciling Two Views of Cryptography (The Compu-
tational Soundness of Formal Encryption)”, in Proc. of 1st IFIP Int. Conf. on
Theoretical Computer Science, Springer LNCS 1872:3-22, 2000.

3. A. Aldini, M. Bravetti, A. Di Pierro, R. Gorrieri, C. Hankin, H. Wiklicky, “Two
Formal Approaches for Approximating Noninterference Properties”, Foundations
of Security Analysis and Design II, R. Focardi and R. Gorrieri, eds., Springer
LNCS 2946:1-43, 2004.

4. A. Aldini, M. Bravetti, R. Gorrieri, “A Process-algebraic Approach for the
Analysis of Probabilistic Non-interference”, Journal of Computer Security,
vol. 12(2):191-245, IOS Press, 2004.

5. M. Backes, B. Pfitzmann, “Computational Probabilistic Non-interference”, in
Proc. of 7th European Symposium on Research in Computer Security, Springer
LNCS 2502:1-23, 2002.

6. A. Datta, R. Kusters, J. C. Mitchell, A. Ramanathan, V. Shmatikov, “Unifying
Equivalence-Based Definitions of Protocol Security”, in Proc. of Workshop on
Issues in the Theory of Security, WITS’04, 2004.

7. A. Di Pierro, C. Hankin, H. Wiklicky, “Approximate Non-Interference”, in Proc.
of 15th Computer Security Foundations Workshop, IEEE CS Press, pp. 1-17,
2002.

8. D. Dolev, A. Yao, “On the Security of Public-key Protocols”, IEEE Transactions
on Information Theory, 29:198-208, 1983.

9. A. Durante, R. Focardi, R. Gorrieri, “A Compiler for Analysing Cryptographic
Protocols Using Non-Interference”, ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 9(4):489-530, 2000.

10. J. W. Gray III, “Toward a Mathematical Foundation for Information Flow Se-
curity”, Journal of Computer Security, 1:255-294, 1992.

11. J. Herzog, “A Computational Interpretation of Dolev-Yao Adversaries”, in Proc.
of 3rd Int. Workshop on Issues in the Theory of Security (WITS’03), 2003.

12. R. A. Kemmerer, “Analyzing Encryption Protocols using Formal Verification
Techniques”, IEEE Journal on Selected Areas in Communications, 7(4):448-457,
1989.

13. P. Laud, “Semantics and Program Analysis of Computationally Secure Informa-
tion Flow”, in Proc. of 10th European Symposium on Programming (ESOP’01),
Springer LNCS 2028:77-91, 2001.

14. P. Lincoln, J. C. Mitchell, M. Mitchell, A. Scedrov, “A Probabilistic Poly-Time
Framework for Protocol Analysis”, in Proc. of 5th ACM Conf. on Computer and
Communications Security, ACM Press, pp. 112-121, 1998.

15. D. Micciancio, B. Warinschi, “Completeness Theorems for the Abadi-Rogaway
Language of Encrypted Expressions”, in 2nd ACM SIGPLAN and IFIP WG 1.7
Workshop on Issues in the Theory of Security (WITS’02), Portland (OR), 2002.

92 A. Troina, A. Aldini, and R. Gorrieri

16. J. K. Millen, S. C. Clark, S. B. Freedman, “The Interrogator: Protocol Security
Analysis”, IEEE Transactions on Software Engineering, SE-13(2):274-288, 1987.

17. L. C. Paulson, “The Inductive Approach to Verifying Cryptographic Protocols”,
Journal of Computer Security, 6(1-2):85-128, 1998.

18. A. Ramanathan, J. Mitchell, A. Scedrov, V. Teague, “Probabilistic Bisimula-
tion and Equivalence for Security Analysis of Network Protocols”, in Proc. of
7th Int. Conf. on Foundations of Software Science and Computation Structures
(FOSSACS’04), Springer LNCS 2987:468-483, 2004.

19. S. Schneider, “Security Properties and CSP”, in IEEE Symposium on Security
and Privacy, IEEE CS Press, pp. 174-187, 1996.

20. A. Troina, A. Aldini, R. Gorrieri, “A Probabilistic Formulation of Imperfect Cryp-
tography”, in Proc. of 1st Int. Workshop on Issues in Security and Petri Nets,
WISP’03, 2003.

21. A. Troina, A. Aldini, R. Gorrieri, “Approximating Imperfect Cryptography in a
Formal Model”, in Proc. of Mefisto Project Final Workshop, Elsevier ENTCS,
to appear, available at http://mefisto.web.cs.unibo.it/pubbl.html.

22. R. Zunino, P. Degano, “A Note on the Perfect Encryption Assumption in a
Process Calculus”, in Proc. of 7th Int. Conf. on Foundations of Software Science
and Computation Structures (FOSSACS’04), Springer LNCS 2987:514-528, 2004.

For-LySa: UML for Authentication Analysis�

Mikael Buchholtz1, Carlo Montangero2,
Lara Perrone2, and Simone Semprini3,��

1 Informatics and Mathematical Modelling,
Technical University of Denmark, Richard Petersens Plads,

DTU-bldg. 321, DK-2800 Kgs. Lyngby, Denmark
mib@imm.dtu.dk

2 Dipartimento di Informatica, Università di Pisa,
Via F. Buonarroti 2 I-56127 Pisa, Italy

monta@di.unipi.it
3 Automated Reasoning Systems Division, ITC-IRST,

Via Sommarive 18, I-38050 Povo – Trento, Italy
semprini@itc.it

Abstract. The DEGAS project aims at enriching standard UML-centred
development environments in such a way that the developers of global
applications can exploit automated formal analyses with minimal over-
head. In this paper, we present For-LySa, an instantiation of the DEGAS
approach for authentication analysis, which exploits an existing analysis
tool developed for the process calculus LySa. We discuss what informa-
tion is needed for the analysis, and how to build the UML model of an
authentication protocol in such a way that the needed information can
be extracted from the model. We then present our prototype implemen-
tation and report on some promising results of its use.

1 Introduction

Many years of research in formal methods have resulted in a wealth of analysis
tools that, in theory, may assist software designers in the development of high
quality products. In practice, however, these tools are often hard to use for non-
experts and their direct, practical impact is therefore limited.

The overall aim of this paper is to illustrate that formal analysis tools can
be used directly by designers of applications for global computing. To this end,
we follow the approach of the DEGAS project where the idea, as illustrated in
Figure 1, is to let developers use their own development environment while the
formal analysis takes place in its own verification environment. More precisely,
the development environment will be the Unified Modelling Language (UML)

� This work is partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies, under the IST-
2001-32072 project DEGAS.

�� This work was carried out when Simone Semprini was at the Dipartimento di Infor-
matica, Università di Pisa

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 93–106, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

94 M. Buchholtz

Verification
environment

Unified
Modelling
Language

Extractor

Reflector

Process
calculi and
analysis
of these

Development
environment

Hidden from the developer

Fig. 1. Overview of the DEGAS approach to analysis of system design

that with is recent popularity in industry has a direct influence on many real
world applications. The verification environment uses process calculi, which are
behavioural models of systems, and the analysis of these calculi will therefore con-
centrate on behavioural aspects of systems. This nicely complements analyses of
structural aspects such as well-typedness of object hierarchies and inter-diagram
consistency, which are the kind of analysis that are typically carried out on UML
today.

In order to perform analysis of the UML models in a verification environment
the first step is to use an extractor, which extracts the parts of the model that
will be relevant for the analysis and put these into the verification environment.
After the analysis has been completed, the analysis result is made available to
the developer using a reflector. To make this approach practical, from the point
of view of the developer, the extractor, the analysis, and the reflector will all be
automated and hidden from the developer. Thus, the developer will not need to
know the finer details of these elements but may concentrate on the UML design
of the system.

The main novelty of this paper, thus, is to illustrate that standard verification
tools can indeed be used to analyse security properties of UML models. To this
end, we give an overview of the For-LySa framework: an instantiation of the
DEGAS approach targeted at designers of security critical applications that use
network communication. Section 2 describes the application domain along with
the security property of authentication, which will be checked in the verification
environment based on the process calculus LySa [4]. Section 3 contains the UML
modelling of applications using secure network communication including some
additional features to cater for authentication analysis. Section 4 describes our
prototype implementation of the For-LySa framework and, finally, Section 5
concludes the paper and comments on future and related work.

For-LySa: UML for Authentication Analysis 95

2 Security Protocols and Authentication

In a global computing environment, applications are typically distributed onto
various host or principals, which communicate through a computer network.
These communication patterns constitute a network protocol, which comprises
the applications executed at the individual principals as well as their network
communication. While we may rely on (some of) these principals to be trustwor-
thy when executing the application, the network itself must be considered unsafe
in the sense that hostile principals might tamper with the network messages.

The usual remedy to protect network protocols from intervention by mali-
cious attackers is to apply cryptography so that parts of the messages may be
kept outside the control of the attacker. In this paper we will illustrate how
our approach works for a class of “classical” authentication protocols that use a
shared server and symmetric key cryptography where the same key is used for
encryption and decryption. This restricted, but representative, setup is chosen
primarily to kept the extractor simple and we foresee no other significant chal-
lenges, neither for the UML modelling nor for the verification tool, in catering
for more general scenarios. More precisely, we consider a network scenario in
which a special principal, S, initially shares a unique key with each of the prin-
cipals A1, . . . , An and B1, . . . , Bm and no other principals know these keys. The
purpose of an authentication protocol that operate in this scenario is to allow
two arbitrary principals Ai and Bj to be certain that a communication takes
place between precisely these two principals and no one else.

To meet this goal, Ai, Bj , and S may, for example, engage in the following
version of the Wide-mouthed-frog Protocol [5] (where we write {message}key for
a message encrypted under a key):

1. Ai → S : Ai, {Bj ,K}KSAi

2. S → Bj : {Ai,K}KSBj

3. Ai → Bj : {message}K

In the protocol, the principal Ai generates a session key K, which it sends to
the server, encrypted under the key KSAi

shared only between S and Ai. The
server decrypts the session key and forwards it encrypted to the Bj , which will
afterwards be able to decrypt message 3 send by Ai. It is important to stress that
both the message sequence and the internal action of each of the principals are
equally important parts of the description of the protocol. Therefore, all these
aspects will be modelled in UML in order to make the model amenable for a
precise analysis of whether a protocol obtains its goal.

We focus on checking an authentication property, which loosely speaking says
that “messages should end up in the right places”. For example, if we consider
the first message of the WMF, a property that we might like to have is that the
message Ai, {Bj ,K}KSAi

should end up at S, only. However, nothing prevents an
attacker from forwarding the two parts of the message to other principals than
S so this property does not hold if the protocol is under influence of an attacker.
Instead, the property we consider focuses on the parts of messages, which are not

96 M. Buchholtz

under the control of the attacker, namely, the parts where encryption has been
applied. For example, the property that should hold for the first message of WMF
is that the encrypted message {Bj ,K}KSAi

should be decrypted at S, only.
To specify the precise details in this kind of property we annotate the UML

model giving a name, �, to each point of encryption and each point of decryption.
Furthermore, each encryption point will be annotated with which decryption
points the encrypted message is intended to be decrypted at and, conversely, for
decryption.

Our verification environment is based around the processes calculi LySa and
a control flow analysis of this calculus [4]. LySa is a processes calculus in the π-
calculus tradition [12] but tailored specifically to model central aspects of security
protocols. The aim of the analysis is to tell whether authentication properties
are satisfied for all executions of a LySa process executed in parallel with an
arbitrary attacker process. The analysis will report all possible breaches of the
authentication properties in an error component ψ: finding a pair (�, �′) in ψ
means that something encrypted at � might be decrypted at �′ thereby breaking
the specified authentication property.

The analysis works in form of a control flow analysis, which computes over-
approximations to the behaviour of all executions of a LySa process. In particu-
lar, it computes over-approximations to the error component, which means that
the analysis may report an error that is not actually there. However, it is proven
in [4] that the analysis will never report too few errors and also illustrated that
reporting too many errors is not at big problem in practice.

3 UML for Authentication Protocols

To model security protocols in a consistent way in UML, we define two UML pro-
files. They must be used when modelling specific protocols in order to make them
amenable for analysis. First we present the profile Static For-LySa that describes
how the concepts from the previous section, such as principals, keys, messages,
etc., are modelled in UML. Next, we introduce a second profile, For-LySa, that
is used to describe the dynamics of a protocol as well as the information needed
for the analysis. Rather than presenting the profiles in tabular form, we present
domain models, with the understanding that their classes and relations are the
stereotypes in the profile. Note that we have two profiles to keep distinct what
is actually needed to implement the protocol from what is additionally needed
for the analysis.

3.1 The Static For-LySa Profile

The classes and associations in the class diagram on Figure 2 define the stereo-
types in the profile Static For-LySa. The central classes in the diagram are
Principal, Key, and Msg (for messages).

Keys can either be a SessionKey generated for each session or it can be the
PrivateKey of a principal that is shared in advance with the Server. A Server is a
special kind of principal that knows the private keys of all the other principals

For-LySa: UML for Authentication Analysis 97

Fig. 2. The domain model

in the protocol. We represent this knowledge as an operation key() that, given
a principal, returns its private key. The stereotype 〈〈singleton〉〉 ensures that in a
given protocol specification only one server is used.

The principals communicate and exchange messages as shown by the commu-
nicates and sentTo associations. To express communication, the operation msg()
can be invoked on the principal, which the message is sentTo. The specification
of this operation is that it copies its argument into variable in of the receiver.
For uniformity, and to ease the extraction process, we expect that the value of
variable out is passed to msg(), i.e. that messages are put into this variable and
then sent. Messages carry Payloads, some of which can be CryptedPayloads, which
carry Data in their contents. In summary, whenever a principal contributes to a
step of the protocol, it needs to keep track of two messages: an incoming mes-
sage that is left by msg() in its in variable, and triggers the contribution, and
the outgoing message that it builds in its out variable and then sends.

To specify a protocol, one needs to specify subtypes of Principal that intro-
duce specific operations to set the outgoing messages, using the parts of the
incoming ones as well as specific information held by the principal in private at-
tributes. These operations should be introduced in a standardised way, that we
will discuss in the sequel. The same applies to the operations that are needed to
disassemble the incoming messages. However, there are some generic operations
that can be used to build and open the messages. Some of these are left abstract,
namely crypt() and decrypt(), since we leave the choice of the cryptographic al-
gorithms open to further specialisation. In fact, the analysis treats encryption
as abstract operations so we would not get more precise analysis results by spe-
cialising these operations further. The other two generic operations, checkMsg()
and checkDecrypt() are null operations: they are introduced to allow the specifier
to express the checks that need to be done on the incoming messages, and on
the results of decryption actions, respectively. These checks can be conveniently

98 M. Buchholtz

Fig. 3. The WMF protocol overview

expressed as constraints in the sequence diagram that describes the dynamics
of the protocol in the For-LySa profile in Section 3.2. There, the protocol de-
signer can use checkMsg() and checkDecrypt() as placeholders, to introduce the
constraints on the incoming and decrypted data.

We assume that decrypt() leaves its result in variables of type DecryptedPay-
load that are named systematically for each relevant type of message, as we will
see later. In this way, the checks and the operations that build new messages can
exploit the results of decryptions in these variables. In a DecryptedPayload data
can be accessed via dd (of type Data). The distinction of Data and Decrypted-
Data is not strictly necessary, at this level of presentation, but it helps when
extending the model to introduce the decorations needed for the analysis, as we
will do in Section 3.2.

As an example of the use of Static For-LySa, we present the overview of
the WMF protocol, described in the previous section. Figure 3 presents the
structure of the protocol, showing the intended communications and the involved
messages. The types of the principals are named A, B, and S for the initiator,
the responder, and the server, respectively. The diagram also makes clear how
the message types are named systematically, Msg1, Msg2, and Msg3, according
to the order in which the messages are sent. The structure of each message is
specified in distinct diagrams such as the one in Figure 4 that makes clear how
the various parts of the message are named by systematically appending indexes
to their types. Similar diagrams are introduced for the other message types.

In the diagram in Figure 3 we also introduce the names of the operations
to build and dissect messages: for each message of type Msgi, there are opera-
tions premsgi in the sender and postmsgi in the receiver, to build and to open
the message, respectively. The semantics of these operation will be specified by
post-conditions. Finally, we introduce names for the local information of each
principal, like private keys, session keys, and temporary storage, such as vari-
able yK in principal B. This variable is needed by the responder to store the key,
received in the second message, to be able to decrypt the third message sent by
the initiator.

For-LySa: UML for Authentication Analysis 99

3.2 The For-LySa Profile

The UML view of the concepts that are needed to perform the authentication
analysis are shown in Figure 5. In this figure, when we use the same names as
in Figure 2 we denote entities that are specialising homonymous entities in the
domain model. The other classes are new concepts, introduced for the analysis.
These classes, and their associations and constraints define profile For-LySa.

First of all, each message carries with it the definition of the source principal,
from which it is sent, along with the sink principal, which it should reach. Second,
each encrypted payload is decorated with Cryptopoints. The idea is that, for
each encrypted payload the annotations make explicit its origin, i.e. the point
in the narration where the payload is encrypted, and its destinations, i.e. the
set of the intended points of decryption. Similarly, for the decrypted data, the
annotations make explicit the destination, i.e. the point in the narration where
they are decrypted, and their intended origins, i.e. the set of expected places of
encryption. Each crypto-point is a label, that will be associated to a single point
of encryption (one of the premsgi) or decryption (postmsgi) in the dynamic view
of the protocol.

As an example of the use of the For-LySa profile, Figure 6 presents the
complete description of Msg1 including the decorations needed to specify the
authentication property. The intended origin and destination of the encrypted
part of the first message of WMF are specified to be Acp1 and Scp1, respectively.
The stereotype 〈〈destIncludes〉〉 in Figure 6 is defined as the composition of the

Fig. 4. The structure of Msg1

Fig. 5. The analysis model

100 M. Buchholtz

Fig. 6. The structure of Msg1 for the analysis

Fig. 7. The sequence diagram for WMF

two aggregations from CryptedPayload to Cryptopoint in Figure 5. Similarly for
〈〈origIncludes〉〉. Similar diagrams describe the remaining two messages in the
protocol.

To complete the WMF example, we need to address the dynamics of the
protocol and this is done in a sequence diagram shown in Figure 7. The diagram
adopts naming conventions consistent with those used in our scenario: the typical
initiator object of type A is named i, the responder object of type B is named j,
while the server object of type S is named s.

Each step in the protocol is divided into three sub-steps:
1. the sender packages the message,
2. the message is communicated,
3. the recipient processes the incoming message.

For-LySa: UML for Authentication Analysis 101

The third step is typically the most involved and includes tasks such as
checking that the message format is correct, decrypting the parts intended for
the current recipient, and storing the content of the

First, premsg1() builds the message in the out message of the sender. Second,
msg() sends it to the recipient where it is stored as the in message. Finally,
the recipient processes the received message by checking the message format
with checkmsg(), decrypting the relevant part with postmsg1(), and ensuring
the encrypted data also have the correct format with checkdecrypt(). When all
these checks succeed the protocol continues similarly with the second and third
messages (omitted for sake of space).

Operation msg(m: Msg) is polymorphic and accepts any message. However,
the effective type of the message that is exchanged in each step, has to be spec-
ified as a constraint on the argument of msg(), as shown in the diagram. The
other operations are not polymorphic, and have different names (and likely pa-
rameters) in each step. The signature of the operation is specified in the overview
diagram of the analysis level, which is otherwise similar to Figure 3 and is not
presented for space sake.

The operations are specified via post-conditions on the state of their prin-
cipal. Post-conditions are attached to the operations as constraints, as shown
in Figure 7 for premsgs and postmsgs. The natural place to attach these con-
straints would be the operations themselves, in the overview diagram, since they
are the definition of the operation semantics. However, it is easier to follow the
behaviour of the protocol having the post-condition attached to the call rather
than to the definition, in another diagram.

We use a very simple language to write post-conditions. There is a record
scope opener á la Pascal, for readability:

withx : T 〈condition〉

means that x is constrained to be of type T , and that its selectors need not be
prefixed by x in 〈condition〉. Conditions are conjunctions of equalities, where the
left hand side identifies a field of the object, and the right side is an expression
for its value. We use the standard dot notation to access object fields and to
navigate along associations.

Expressions are built out of constructors, like SetofCryptpoint and Datai;
operations like crypt and decrypt; variables, either parameters like p1 and p2,
or locals of the principal that performs the operation, like out, kA, and k; and
constants, i.e. the names of the objects, like i, and crypto-points labels, like Acp1.

The arguments to the constructors give values to the fields, in the order given
in the diagrams that introduce them. Singleton crypto-point sets are built from
the label, like in the last but one line of the post-condition for premsg1. The
factory method cp builds Cryptopoint objects out of labels.

There are a couple of assumptions, with respect to keys:
– private keys can be freely used in the operations of the owner, since they are

assumed to be initialised before the protocol starts;
– session keys must be initialised explicitly before they are used: for this pur-

pose the For-LySa profile has the predicate isNewKey() (see Principal in

102 M. Buchholtz

Figure 5) that can be used in a constraint before the first use of the vari-
able. Using constraints leads to more concise diagrams than using explicit
initialising operations, and has a straightforward mapping in a restriction
operation in LySa.

As an example, the constraint attached to premsg1(i, s, i, j) in Figure 7
specifies that the value of the local variable out of initiator i of type A will
be a message of the form i, {j, k}kA, i.e. of the form of the message in the first
step in WMF. Also, it describes the annotations of the authentication property,
where Acp1 is the crypto-point associated with the encryption performed here,
and Scp1 is associated to the corresponding decryption in postmsg1.

The post-condition attached to postmsg1 defines the effect of decrypting the
message received by the server, in its variable theDecryptedPayload1 2. This is
an example of the convention on decrypting actions: they leave their results in
variables with names theDecryptedPayloadi, where i is the same index of the
corresponding CryptedPayload. In this example, the data are decrypted from the
incoming message using a key passed as a parameter to the operation.

A number of checks on the messages have to be made explicit, to express
dynamic constraints on the messages. These checks are expressed in UML as
invariant constraints attached to the checking operations, in the sequence dia-
gram. They are lists of equalities, with the syntax given above.

The source and sink of each message should be checked against the expected
value. Additional checks depends on the specifics of the protocol, like the third
condition attached to the third operation in Figure 7, which states that the clear
payload must be equal to the message source, i.e. in this protocol each initiator
can only speak for itself. Similarly, the next check, in the fifth operation, controls
that the incoming responder (the b field in the encrypted payload) is indeed the
intended one, namely j.

4 The For-LySa Prototype

We have developed a prototype implementation that can validate authentication
properties of applications modelled in UML using the For-LySa profiles. The
overall architecture of this For-LySa prototype follows the DEGAS approach on
Figure 1.

In the For-LySa prototype, UML models are designed with Rational XDE
version 1.5, and exported into XMI version 1.1, which is a standard, XML-based
way to represent UML models.

The extractor is written in Java and takes as input the XMI representation of
the UML model and delivers as output a corresponding LySa process annotated
with the security properties specified in the UML model. The implementation of
the extractor benefits from a generic Java library for writing extractors, which
has been developed within the DEGAS project as part of the Java version of
the PEPA Workbench [1]. The main operations of the extractor are: parsing the
XMI file, building an intermediate representation, and finally generating a LySa
process.

For-LySa: UML for Authentication Analysis 103

The verification tool is implemented in Standard ML and is available for
download on the Web [2]. It takes as input a parameterised LySa process gen-
erated by the extractor and makes a finite instantiation of the scenario with
i = 1, . . . , n and j = 1, . . . ,m of principals A and B, respectively. The analysis,
which is carried out on this finite instantiation of the scenario, returns an error
component, ψ, containing pairs of crypto-points where the authentication prop-
erty may be violated as explained in Section 2. The extractor has added indices
ij to these crypto-points such that they will, in general, be of the form �ij .

Our current prototype does not include a reflector, as such. We simply,
present the error component, ψ, to the developer. As illustrated in the next
section, this information can directly be of use to the developer.

4.1 A Case Study

Using the For-LySa prototype on our running example, the WMF protocol, the
analyser returns an empty error component, stating that no problems occur in
any execution of the protocol — even in the presence of an attacker.

More precisely, the For-LySa prototype validates the protocol deployed in the
scenario described in Figure 3 where additional attacker principals have access
to the network. The For-LySa prototype validates that the authentication prop-
erties specified in the annotations to the UML model in Figure 6 and Figure 7
indeed hold for the WMF. That is, it validates that messages can only be suc-
cessfully decrypted at the places specified in the annotations no matter what an
attacker may try.

To illustrate the fine details that decides whether a protocol behaves correctly
or not consider a slightly modified version of the WMF protocol where the first
message is modified so that the identity of the responder is no longer encrypted.
This affects, of course, the construction of the message in premsg1() as well as
the checks made by the server in ckeckmsg(), postmsg1(), and ckeckdecrypt().

When we run the For-LySa prototype on this modified WMF protocol, it gives
a non-empty error component, i.e. it reports that the authentication properties
may be violated. Summarising the result in the error component, the analyser
reports that something may go wrong because:

– something encrypted at Acp1ij may be decrypted at Scp1,
– something encrypted at Acp2ij may be decrypted at Bcp2ij′ for j �= j′, i.e.

at a wrong responder,
– something encrypted at Acp2ij may be decrypted at the attacker, and
– something encrypted at the attacker may be decrypted at Bcp2ij .

The first of these error messages signals that the encrypted part of the first
message may be decrypted at Scp1 but that the server expected something that
was not encrypted at Acp1ij . This may happen if the responders name, j, in
first message is substituted by the name of another principal, say j’, by the
attacker and is possible in the modified WMF because the responders name is
not encrypted. Next, in the second message, the server will forward the session
key to the principal j’ and consequently the thirds message may successfully be

104 M. Buchholtz

decrypted at j’ i.e. at a wrong responder. This turns up as the second class of
error message above.

There is a similar kind of attack, which allows the attacker to substitute his
own name for the responders name in the first message and, consequently allows
him to interact with the protocol as illustrated by the two last error messages.

Presenting these error messages to the developer allows him to pinpoint the
precise places in the UML model where encryption fail to preserve authentication
as indented. Of course, repairing the protocol on the basis of this information
requires creativity on the part of the developer but the For-LySa prototype
allows him to quickly validate whether modifications have the desired effect.

5 Conclusion

An overall aim of the work presented in this paper is to provide software develop-
ers with a high-level interface to formal analysis tools. The For-LySa framework
specifically concentrates on using UML as the interface for developers of appli-
cations that contain secure network communication.

With the work presented here, we have reached a first milestone toward this
aim — and with a positive result. We have provided the For-LySa UML profiles
and illustrated how these may be used to model applications in our target do-
main. Furthermore, we are able to perform automated extraction and analysis,
using the For-LySa prototype, thereby allowing developers to perform analysis
of their UML models with no particular effort on their part.

Before the For-LySa framework can be tested extensively in the field, the
loop of Figure 1 must be closed, to provide the relevant feed-back to the de-
signer with a reflector. The problem is to find a convenient way to represent the
illegal decryptions revealed by the analysis. This should be relatively straightfor-
ward except for the rather cumbersome task of automatically adding the error
messages to the UML diagrams in a visually appealing manner.

5.1 Related Work

The overall aim of our work somewhat similar to the aim of frameworks such
as Casper [11], CAPSL [6], CVS [7], and AVISS [3]. These frameworks all aim
at providing developers of security protocols with high-level interfaces for formal
analysis tools but unlike our approach they are based on ad-hoc notation, which
describes protocols in an “A→ B : message”-style. On one hand, this may lead
to more compact description of protocols than our but on the other hand we
have all the advantages of using a general purpose modelling language.

On the technical side, the information found in protocol descriptions in the
above frameworks is quite similar to the information captured in our message
sequence diagrams. Also, in the extraction we find similarities, in particular
with [11] that also has a target analysis formalism using a process calculus. The
extraction made in [11] is, however, somewhat simpler than ours because its high-
level language is designed so that is directly includes process calculi expression
at convenient places.

For-LySa: UML for Authentication Analysis 105

An important effort that shares the DEGAS focus on the UML is centred
on UMLsec [8]. This is a UML profile to express security-relevant information
within the diagrams in a system specification, and on the related approach to
secure system development [9]. UMLsec allows the designer to express recurring
security requirements, like fair exchange, secrecy/confidentiality, secure informa-
tion flow, secure communication link. Rules are given to validate a model against
included security requirements, based on a formal semantics for the used frag-
ment of UML, with a formal notion of adversary. This semantic base permits
in principle to check whether the constraints associated with the UML stereo-
types are fulfilled in a given specification. Work is ongoing to provide automatic
analysis support, with an approach similar to that of DEGAS: [9] proposes to
express protocols with sequence diagrams, translate them in first-order logic and
then exploit standard theorem-provers, like e-SETHEO, to reveal potential at-
tacks: [10]. The results of the analysis can be used to produce an attack scenario.
In our opinion, For-LySa provides a more intuitive way to express authentication
requirements that are less central in UMLsec: it should be worthwhile to assess
the feasibility of the integration of the two approaches.

References

1. The Java edition of the Pepa workbench. Website hosted by School of Informatics,
University of Edinburgh: http://homepages.inf.ed.ac.uk/s9905941/jPEPA/, May
2004.

2. LySa – a process calculus. http://www.imm.dtu.dk/cs LySa, May 2004. Web-
site hosted by Informatics and Mathematical Modelling, Technical University of
Denmark.

3. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Mödersheim,
M. Rusinowitch, M. Turuani, L. Viganò, and L. Vigneron. The AVISS security
protocol analysis tool. In CAV 2002, volume 2404 of Lecture Notes in Computer
Science, pages 349–353. Springer Verlag, 2002.

4. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th Computer Security
Foundations Workshop (CSFW 2003), pages 126–140. IEEE Computer Society
Press, 2003.

5. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans-
actions on Computer Systems, pages 18–36, 1990.

6. G. Denker, J. Millen, and H. Rueß. The CAPSL integrated protocol environment.
Technical Report SRI-CLS-2000-02, SRI International, 2000.

7. A. Durante, R. Focardi, and R. Gorrieri. A compiler for analyzing cryptographic
protocols using noninterference. ACM Transactions on Software Engineering and
Methodology, 9(4):488–528, 2000.

8. J. Jürjens. UMLsec: Extending UML for secure systems development. In UML
2002 – The Unified Modeling Language, volume 2460 of Lecture Notes in Computer
Science, pages 412–425, 2002.

9. J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2004. To
appear.

106 M. Buchholtz

10. J. Jürjens and T. A. Kuhn. Automated theorem proving for cryptograpich proto-
cols with automatic attack generation, 2004. Personal Communication.

11. G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of
Computer Security, 6(1):53–84, 1998.

12. R. Milner, J. Parrow, and D. Walker. A calculus of Mobile processes (I and II).
Information and Computation, 100(1):1–77, 1992.

Performance Analysis of a UML
Micro-business Case Study�

Katerina Pokozy-Korenblat, Corrado Priami, and Paola Quaglia

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Abstract. This paper presents a technique to carry out performance
analysis of UML specifications. We consider UML specifications com-
posed of activity, sequence and deployment diagrams. Specifications are
translated into the stochastic π-calculus, and quantitative analysis is then
performed via the BioSpi tool. The approach is applied to a web-based
Micro-business case study.

1 Introduction

The Unified Modelling Language (UML) [2] is an a-posteriori industrial standard
for high-level design of software systems. The quantitative evaluation of different
design alternatives, and hence the understanding of system performance can aid
the design of complex systems. In this respect, it would be useful to propose
to UML modelers an automated tool that allows performance analysis of UML
specifications and nonetheless is free from the typical complexities of the analyses
carried out over formal descriptions.

Our work goes in the direction sketched above. The approach consists in first
compiling UML specifications into π-calculus intermediate representations,

and then carrying out performance analysis by the BioSpi tool [1]. We show
the feasibility of our approach on a web-based micro-business case study [3]
developed by Motorola within the DEGAS project [4].

Fig. 1. Performance analysis of UML specifications

� Work partially funded by the IST-2001-32072 project DEGAS.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 107–126, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

108 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Figure 1 presents a schematic view of the approach. Starting from activity,
sequence and deployment diagrams enriched with supplementary quantitative
parameters we obtain a corresponding stochastic π-calculus specification (Step
1). This last specification is simulated using the BioSpi tool (Step 2). On the
basis of the simulation results we derive performance curves characterizing the
influence of the given quantitative measures (channel bandwidth, authentication
time, and the like) over the behaviour of the global system (Step 3).

In Section 2 we introduce the UML specification of the web-based micro-
business case study. For convenience the UML diagrams are collected all together
in the appendix at the end of the paper. The definition of the stochastic π-
calculus is given in Section 3. In Section 4 we present our translation from the
UML specification to the stochastic π-calculus dealing with the translation of
activity diagrams, the translation of sequence diagrams, the management of the
scoping of names, and the proper setting of quantitative parameters. The paper
ends with some of the results we got by carrying out performance analysis of the
stochastic π-calculus specification of the UML case study by the BioSpi tool.

2 UML Specification of the Case Study

Here we describe the web-based micro-business case study presented by Motorola
in the DEGAS project as an example of a typical global computing application
[3]. This case study aims at designing an application to provide support to micro
web-based business to those enterprises that do not possess the capability of
developing proprietary solutions for e-business. The players within the networked
system form a community of sellers and buyers. The system offers to the buyer
easy access to a variety of information about available services, and simple peer-
to-peer e-commerce mechanisms.

Within the whole case study, we identify as the most critical process w.r.t.
performance evaluation, the activity of buyers. A common view of the e-commerce
functionality on buyers point of view is given in the E-Commerce activity dia-
gram (Fig. 8). It shows the main steps to be executed to perform a peer-to-peer
e-commerce transaction. First a buyer selects a seller. The next step is a hand-
shake between the seller and the buyer to open a new session and to exchange a
private key that will be used for the whole session.

The handshake activity is detailed in the Handshake sequence diagram that
is reported at the top of Fig. 12. The communication mainly involves two ob-
jects: the Security Manager of the buyer (SM1) and the Security Manager of
the seller (SM2). Security Managers are devoted to the implementation of the
security mechanisms necessary to guarantee the confidentiality of the exchanged
information. The handshake is initiated by the Security Manager of the buyer. It
retrieves the address of the seller from the Sellers Manager which is responsible
for handling the information related to the set of sellers that have registered with
the buyer. The Sellers Manager checks the validity of the pair login/password
that has been provided.

Performance Analysis of a UML Micro-business Case Study 109

Once the address of the seller is known, the buyer sends a message of hand-
shake using the same encryption key as the one used in the last session. The
seller retrieves the key to decrypt the message from the Buyers Manager (whose
role is analogous to the one played by the Sellers Manager). Once the seller has
got the decryption key, it can interpret the message as a handshake. So the seller
generates a new key for the current session, and sends it to the buyer, by en-
crypting it with the last session key. As soon as the buyer receives the new key,
the last session key is abandoned.

During the handshake the buyer has to authenticate with the seller. For au-
thentication purposes (see Fig. 12, bottom) the pair login/password is encrypted
with the session key and sent from the buyer to the seller. The Security Manager
of the seller retrieves the pair login/password stored by the Buyers Manager, and
checks it against the pair received from the buyer. The result of the authentica-
tion is then sent to the buyer.

After the authentication, the buyer can browse the selling list to get the
available items, prepare his basket, and make an e-commerce transaction.

Some information relevant to performance analysis is presented in the de-
ployment diagram (see Fig. 10). In particular, the nodes Seller S and Buyer B
are connected through the physical channel WIRELESS associated with a spe-
cific transfer rate. Moreover, the activity PerformTransaction is associated with
a rate for direct communications with a banking system. Also, rates are used to
define the complexity of the cryptography algorithms exploited by the messages
Encrypt and Decrypt.

The activity diagram E-Commerce (Fig. 8), the activity diagram Prepare-
Basket (Fig. 9), the deployment diagram (Fig. 10), and the sequence diagrams
Handshake (Fig. 12, top), Authenticate (Fig. 12, bottom), and SearchSellerList
(Fig. 11) are the subset of the UML case study specification which we use for
our performance analysis.

3 The Stochastic π-Calculus

A brief description of the stochastic π-calculus [8] follows. It is an extension
of the π-calculus [6, 9] that allows the stochastic modeling of the evolution of
communicating and mobile systems.

As in the π-calculus, we assume the existence of a countably infinite set of
names, called N and ranged over by a, b, . . . with N ∩ {τ} = ∅. Also, a set A of
agent identifiers and ranged over by A, A1, . . . is assumed to be given. Processes
(denoted by P, Q, R, . . . ∈ P) are built from names according to the following
syntax

P ::= 0 | (π, r).P | P + P | P |P | (νx)P | [x = y]P | A(y1, . . . , yn)

where π may be x(y) for input, x〈y〉 for output (where x is the subject and y the
object), or τ for silent moves. Hereafter, the trailing ‘.0’ is always omitted.

110 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

In the prefix (π, r), π is an atomic action in the π-calculus sense, and r is the
single parameter of an exponential distribution that characterizes the stochastic
behaviour of the activity corresponding to the prefix π.

The input prefix binds the name y in the prefixed process. Intuitively, some
name y is received along the link named x. The output prefix does not bind the
name y which is sent along x. The silent prefix τ denotes an action which is invis-
ible to an external observer of the system. Summation denotes nondeterministic
choice. The operator | describes parallel composition of processes.

The restriction operator (νy) in (νy)P is a binder for y with scope P : it
declares that y is a private resource of P , as opposed to a global (or public)
name. An occurrence of a name in a process is free if it is not within the scope
of a binder for that name. The set of free names of a process P is denoted by
fn(P). The matching operator [x = y]P is an if-then constructor: process P is
activated only if x = y. Eventually, A(y1, . . . , yn) represents an agent depending
on the parameters y1, . . . , yn (hereafter denoted ỹ). Each agent identifier A has a
unique defining equation of the form A(y1, . . . , yn) = P , where the yi are distinct
and fn(P) ⊆ ỹ.

The formal semantics of the calculus is given by a set of congruence laws, that
determine when two syntactic expressions are equivalent, and by an operational
semantics consisting of reduction rules to define the dynamic evolution of the
system.

The structural congruence ≡ on processes is defined as the least congruence
satisfying the following clauses:

– P and Q α-equivalent (they only differ in the choice of bound names) implies
P ≡ Q.

– (P | Q) | R ≡ P | (Q | R), P | Q ≡ Q | P , P | 0 ≡ P .
– (P + Q) + R ≡ P + (Q + R), P + Q ≡ Q + P , P + 0 ≡ P .
– (νx)(P | Q) ≡ P | (νx)Q if x �∈ fn(P), (νx)(νy)P ≡ (νy)(νx)P , (νx)0 ≡ 0.
– [x = x]P ≡ P .
– A(ỹ) ≡ P{ỹ/x̃} if A(x̃) = P is the unique defining equation of the constant

A and where {ỹ/x̃} denotes the substitution of the free occurrences of xi

with yi with change of bound names to avoid name clashes.

The dynamic behavior of a process is driven by a race condition. All activities
enabled attempt to proceed, but only the fastest one succeeds. The fastest activ-
ity is different on successive attempts because durations are random variables.
The continuity of the probabilistic distribution ensures that the probability that
two activities end simultaneously is zero. Furthermore, exponential distributions
enjoy the memoryless property: the time at which a certain transition occurs is
independent of the time at which it ever occurred before. Therefore there is no
need to record the time elapsed to reach the current state.

The reduction semantics of the stochastic π-calculus is as follows (actually
we report here the biochemical variant because we are going to use its imple-
mentation BioSpi to carry out performance analysis).

Performance Analysis of a UML Micro-business Case Study 111

(. . .+ (x〈z〉, rb).Q) | ((x(y), rb).P + . . .)
x,rb·1·1−−−−−→ Q | P{z/y}

P
x,rb·r0·r1−−−−−−→ P ′

P | Q x,rb·r′
0·r′

1−−−−−−→ P ′ | Q

{
r′0 = r0 + Inx(Q)
r′1 = r1 +Outx(Q)

P
x,rb·r0·r1−−−−−−→ P ′

(ν x)P
x,rb·r0·r1−−−−−−→ (ν x)P ′

Q ≡ P P
x,rb·r0·r1−−−−−−→ P ′ P ′ ≡ Q′

Q
x,rb·r0·r1−−−−−−→ Q′

A communication event is implemented by the three parameters rb, r0 and r1,
where rb represents the rate of the firing action, and r0 and r1 are computed using
the two functions Inx and Outx defined below. These two functions inductively
count the number of receive and send offers on channel x. They are defined as
follows:

Inx(0) = 0

Inx(
∑
i∈I

(πi, ri).Pi) = |{(πi, ri)|i ∈ I ∧ πi = x(y)}|

Inx(P1|P2) = Inx(P1) + Inx(P2)

Inx((ν z)P) =
{
Inx(P) if z �= x
0 otherwise

Outx is similarly defined, by replacing any occurrence of In with Out and
the condition πi = x(y) with πi = x〈y〉.

Notational Conventions. The following notational conventions are adopted
below. We often omit agent parameters and write A = P instead of A(ỹ) = P ,
the intended meaning being that ỹ = fn(P).

The choice composition P1 + . . .+ Pn is written Σi=1...n Pi.
When the parameter y of an input action x(y) (output action xy, resp.) is

irrelevant we abbreviate the action to x (x, resp.). Also, given a set of names V =
{v1, . . . vn}, we use either (νV)P or ν(v1, . . . , vn)P to mean (νv1) . . . (νvn)P , and
A(V) to mean A(v1, . . . vn).

Moreover, we use the following shorthands. When dealing with closed terms,
we indicate the rates of channels as decorations of the corresponding restriction
operator, and write, e.g., (νx[r])(xy | x(y)) for (νx)((xy, r) | (x(y), r)). When
rates are denoted in this way, the shorthand (νx) is used to mean that channel
x is associated with an infinite rate.

Finally, we sometime present specifications using the syntax of the polyadic
π-calculus, from which the corresponding monadic version can be obtained as
explained in [6].

112 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

4 From UML to the Stochastic π-Calculus

In this section we describe how, given some assumptions on the rates of actions,
UML specifications are translated into the formal notation of the stochastic π-
calculus.

UML allows the description of a system, but lacks the machinery to formally
express the correlation between different diagrams. To overcome this issue we
make a few assumptions on the relation between diagrams. They are relative to
naming and are meant to allow the identification of elements occurring in distinct
diagrams and still representing the same event. In particular, we consider UML
specifications consisting of a set of sequence, activity and deployment diagrams
satisfying the following requirements:

- If the name of an activity coincides with a name of some sequence or activity
diagram, we consider it as a composite activity associated with that diagram.

- Each sequence diagram has to be associated with some activity.

In the following we first illustrate how activity and sequence diagrams are
translated into plain π-calculus. Then we comment on the way measures are
added to the processes resulting from this encoding, so leading to a stochastic π-
calculus representation of the given UML specification. This is where deployment
diagrams come into play. Indeed, measures related to performance can be given
in various forms. They can be indicated as the rates of physical channels drawn
in deployment diagrams, as the rates of the messages of sequence diagrams, as
the rates of certain activities in the activity diagrams, or also as probabilities on
choice constructions (multiple output, and branchings in activity and sequence
diagrams).

4.1 Activity Diagrams

Our translation of activity diagrams into π-calculus processes is illustrated be-
low. As a general rule, an activity is mapped into a π-calculus action, and a
sequence of activities is translated into a sequential process composed by the
corresponding actions. We explain in the following how forks, joins, and the
other UML constructions are locally encoded into π-calculus processes. For syn-
chronization purposes, the translations of some constructions make use of input
and output actions over specialized channels. In the π-calculus process trans-
lating the global system, all of those channels are restricted and their scope is
determined as explained below.

A fork construction (Fig. 2(a)) is represented by sending initialization signals
in an arbitrary order to all the agents corresponding to the parallel control flows
spawned by the fork. For each parallel control flow we define a recursive agent
that is activated by receiving the initialization signal. For the sample in Fig. 2(a),
e.g., we obtain the parallel composition of three processes: Main, Agent s2, and
Agent s3. Agent Main, after executing the action s1, unblocks the other two
processes by sending signals over ini s2 and ini s3.

Performance Analysis of a UML Micro-business Case Study 113

Fig. 2. Translation of elements of activity diagrams (fork, join, branch, merge, cycle,
composite activity)

To translate a join construction (Fig. 2(b)) the ingoing parallel control flows
are synchronized with the agent representing the outgoing edge to unblock the
main activity that follows the join node (s4 in the figure). Called i the join node,
the special channel syni is introduced to force such synchronization.

A branch construction (Fig. 2(c)) is translated as the sum of the alterna-
tive activities, prefixed by the activity leading to the branch (s1 in the example).

114 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Multiple output transitions, whose semantics is similar to that of the branch
construction, are encoded in an analogous way.

To translate a merge construction (Fig. 2(d)), we compose via nondeter-
ministic choice the sequences of actions corresponding to the alternative control
flows. In the acyclic case, multiple input transitions are dealt with in a similar
way.

To represent cycle constructions (Fig. 2(e)), we first of all identify a set of
simple cycles and fix an ordering of their nodes. For the activity diagram in
Fig. 2(e), e.g., we isolate the simple cycles C1=〈S1, S2, S3〉 and C2=〈S2, S3,
S4〉. For each cycle two agents are specified: one to represent its main body
(Body Ci, i = 1, 2) and the other to monitor the possible intersection with
other cycles (Cycle Ci). Also, a principal agent is associated with the diagram
(Main). It encodes the activities that are external to cycles and triggers the
relevant monitor when the initial node of a cycle is met. We use three fresh
names per cycle: one for the initialization of the cycle body (inibody Ci in the
example), one for the initialization of the cycle monitor (ini Ci), and a name to
signal the end of a run of the cycle (end Ci).

Once triggered, the monitor of cycle Ci either sends an initialization signal to
Body Ci, or forces the execution of the actions leading to the initial node of the
other cycle and initializes the corresponding monitor. In Body C1 for instance,
these two behaviours are represented by the first and the second alternative of
the top-level non-deterministic choice of the following sub-process:

inibody C1. (ini C1. end C1.Cycle C1 + Cycle C1) + s1. ini C2.Cycle C1.

If the first alternative is chosen, the cycle is run once by Body Ci and the
control goes back to Cycle Ci via a synchronization over ini Ci. This gives raise
to two further possibilities: (i) an end Ci signal is sent to the agent Main; (ii)
the monitor triggers yet another execution of Ci or it induces the firing of some
actions and then initializes the monitor of the other cycle. For the agent Cycle C1

the above alternatives correspond, respectively, to the left and the right branch
of (ini C1.end C1.Cycle C1 + Cycle C1). The agent Cycle C2 has a completely
analogous structure.

We call composite activities those activities that are associated with a
separate sequence or activity diagram, say S∗ as in Fig. 2(f). The diagram S∗

is translated as a separate process whose starting and ending points are syn-
chronized with the rest of the translation through two special channels, ini s∗

and end s∗. The main diagram S is encoded in such a way that, correspondingly
to the translation of the composite activity S∗, the private name end s∗ is sent
over the channel ini s∗. This unblocks the process that represents the composite
activity. Also, each possible control flow in such a process is let to terminate
with an output action over the parameter received on ini s∗. So, upon synchro-
nization over end s∗, the control goes back to the agent corresponding to the
main diagram. Fig. 2(f) shows an example where an activity of the diagram S is
refined into the activity diagram S∗.

Performance Analysis of a UML Micro-business Case Study 115

Fig. 3. Translation of elements of sequence diagrams (send and receive, explicit return,
branching, assignment)

4.2 Sequence Diagrams

Relatively to sequence diagrams we exploit the translation appeared in [7]. The
interested reader is referred to that paper for full details. Here we only recall a
few ideas underpinning the encoding. We also comment on the scoping of the
restricted names related to the adopted translation.

The objects of sequence diagrams are represented as π-calculus processes and
are combined together by parallel composition. Given the diagram named D,
the above parallel composition also embraces a monitor process, conventionally
called SD D, that takes care of initializing the processes translating the various
objects of D.

Messages between objects are rendered as communications over private chan-
nels, one per UML message. The π-process corresponding to the sending UML
object performs an output action, the other process executes an input. Self-calls
are interpreted as communications with additional auxiliary objects (see, e.g.,
the actions encrypt and decrypt and the process OUT (encrypt, decrypt) in the
agent TRANS SearchSellerList below).

The explicit return of the UML message represented by the π-calculus name
m is also rendered by a synchronization. The π-calculus channel adopted in this
case is return m to keep track of the name of the original message (Fig. 3(a)).

The branching of several messages is translated by making use of a fresh
name for synchronization, say syn, to ensure that the receiving process does not
proceed in its execution before all the messages of the branch have been delivered.
In the example in Fig. 3(b), for instance, the input action m3 is blocked by two
synchronizations on syn which in turn depend on the synchronizations on both
m1 and m2.

116 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

An assignment construction is generally used to bind the return value of
a message to an identifier. The translation of assignments is then similar to
that of messages with an explicit return. The single difference is that parame-
ters of input and output action over the return channel become relevant in the
translation of assignments. Hence in this case, real communication, rather than
synchronization, is used (Fig. 3(c)).

The names used to encode the messages of sequence diagrams occur restricted
in the global translation of the UML specification. Appropriately tuning their
scope is a main issue in case one wishes to carry out performance evaluation
over π-calculus terms comprising several instances of the same object. This is
the case, e.g., when later on we analyze the behaviour of a system with five
active sellers. As a simple example, consider the sequence diagram in Fig. 4 and
imagine we want to investigate the behaviour of a system composed of one single
instance of O1 and several instances of O2. It is necessary to grant that, whenever
O1 starts interacting with a certain instance of O2, they keep communicating
without interference from any of the other instances of O2. To achieve that, the
messages m1, m2, and m3 are translated as private names sent by the monitor
agent SD D as (polyadic) parameter of the communication that initializes the
objects O1 and O2.

Fig. 4. Several instances of the same object: an example

4.3 Scoping

A UML specification is globally represented as the π-calculus process given by
the parallel composition of the processes corresponding to the translation of
the activity and the sequence diagrams in the original specification (recall that
some of them might be the refinement of some activities occurring in other
diagrams).

We already commented on the fact that some encodings exploit auxiliary
names for synchronization and monitoring purposes, and that those names occur
restricted in the translation of the global system. The table below summarizes the
scope associated with those names depending on their role in the translation.
In the second column of the table we use the name TRANS D to mean the
stochastic π-calculus process that translates the UML diagram D.

Performance Analysis of a UML Micro-business Case Study 117

restricted name used as scope

ini action for a fork construction in diagram D TRANS D

ini action for a join construction in diagram D TRANS D

ini C, inibody C, end C for the cycle C in diagram D TRANS D

ini action for diagram D global
(if D is a seq. diagram this is the ini action of its monitor)

end action for the composite activity D∗ in D TRANS D
(if D∗ is a seq. diagram this is the end action of its monitor)

ini action for an object in the sequence diagram D TRANS D

translation of a self-call in the sequence diagram D TRANS D

translation of a message in the seq. diagram D SD D
(self-calls excluded)

synchronization signal for a message with explicit return in D TRANS D

4.4 Measures

The last step in the translation of UML specifications into processes of the
stochastic π-calculus is the proper setting of the rates associated with names.

For the case study at hand, such a setting is based on the following assump-
tions. Any Buyer can send requests as frequently as it wants but can never
produce parallel requests.

The modulation and coding scheme of the wireless physical channels in the
deployment diagram (Fig. 10) is supposed to be CS-2 [5], so the data transfer
rate over those channels is of 13.4 kbit/sec. From this datum, fixing the default
size of request messages to be 100 bytes, we get a rate of 17 requests/sec for the
communications between Seller and Buyer (see below the rates of m3 and m4 in
the agent SD SearchSellerList).

Eventually, we assume that the default average time of encryption/decryption
operations is 0.1 sec (then the rate of, e.g., encrypt in the agent TRANS -
SearchSellerList is 10).

In our translation we use rates to encode probabilistic choices, too. In that
case, it is sufficient to choose rates proportional to the probability of each branch
in the choice construction (see in TRANS ECommerce the rates associated
with v1, v2 and with w1, w2).

4.5 Translation of the Case Study

We show below the stochastic π-calculus process that globally translates the
UML specification of the web-based micro-business case study.

The translation makes use of (a family of) auxiliary agents called OUT (ỹ)
that can continuously offer output actions over their parameters. Precisely, for
N = {n1, . . . , nj}, the agent OUT (N) is defined to be Σni∈N ni. OUT (N).

118 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

The stochastic π-process associated with the UML specification of the case
study is the following:

System = (ν A, ini ECommerce, ini PrepareBasket,

ini SD SearchSellerList, ini SD Handshake, ini SD Authenticate)
(TRANS ECommerce | TRANS SearchSellerList |

TRANS Authenticate | TRANS Handshake |
TRANS PrepareBasket | OUT (A, I))

where

– the agent TRANS X is the translation of diagram X;
– A is the set of names associated with the non-composite activities from all the

diagrams of the UML specification (like, e.g., start, performTransaction,
. . . from the E-Commerce activity diagram);

– I is the set of the ini actions of the diagrams that are not recognized as
composite activities (ini ECommerce only in our case);

The agent OUT (A, I) offers complementary actions to all the input ac-
tions over names in both A and I. Hence the parallel component OUT (A, I) of
System, together with the restriction over the names in A, closes up the spec-
ification of System as it is required by the BioSpi tool. Also observe that, if i
is the ini action for a certain diagram D∗ and i /∈ I then D∗ corresponds to a
composite activity in some other diagram D. Then the proper initialization of
D∗ via an output action over i is carried out by the process translating D (see
Fig. 2(f)).

For the sake of space, we show below the definition of two agents only: one
for the translation of an activity diagram (TRANS ECommerce) and the other
for the translation of a sequence diagram (TRANS SearchSellerList).

First we comment on TRANS ECommerce. Its specification reflects the
features we explained for the translation of UML diagrams and the scoping of
names. In particular, the following observation hold.

– The activities Handshake, Authenticate, SearchSellerList and PrepareBas-
ket are dealt with as composite activities, and are let to correspond to the
homonymous diagrams.

– Two symple cycles are identified in the E-Commerce diagram:
C1=〈SellectSeller, Handshake〉 and
C2=〈SellectSeller, Handshake, Authenticate, SearchSellerList〉.

– Relatively to the branch construction that follows the Handshake activity
in the E-Commerce diagram, it is assumed that the probability to return
to SelectSeller is 0.1. This is rendered by using two private names (v1 and
v2) to guard the two alternatives of the choice constructor corresponding to
the UML branch (see the agent Cycle1) and associating them the rates 9000
and 1000, respectively.

Performance Analysis of a UML Micro-business Case Study 119

– The possible continuations after the activity SearchSellerList are supposed to
be equi-probable. This is interpreted by letting the relevant choice operator
of Cycle2 be guarded by input actions over the private names w1 and w2,
both of which are associated with the rate 1000.

– To offer complementary actions to the inputs over v1, v2, w1 and w2, the
ancillary agent OUT (v1, v2, w1, w2) is composed in parallel with the agents
directly describing the E-Commerce activity diagram.
Summing up, the definition of TRANS ECommerce is as follows.

TRANS ECommerce =
(ν v1[9000], v2[1000], w1[1000], w2[1000], end SD Handshake,

end SD Authenticate, end SD SearchSellerList, end PrepareBasket,
ini Cycle1, inibody Cycle1, end Cycle1, ini Cycle2, inibody Cycle2, end Cycle2)

(ECommerce | Cycle1 | Body Cycle1 | Cycle2 | Body Cycle2 | OUT (v1, v2, w1, w2))

ECommerce = ini ECommerce.
start.
ini Cycle1.
(end Cycle1.

ini SD Authenticate〈end SD Authenticate〉.
end SD Authenticate.
ini SD SearchSellerList〈end SD SearchSellerList〉.
end SD SearchSellerList.
ini PrepareBasket〈end PrepareBasket〉.
end PrepareBasket.
performTransaction.
closeSession.
ECommerce)

+
(end Cycle2.

ini PrepareBasket〈end PrepareBasket〉.
end PrepareBasket.
performTransaction.
closeSession.
ECommerce)

Cycle1 = ini Cycle1.
(inibody Cycle1. (v1. ini Cycle1. end Cycle1. Cycle1 + v2. Cycle1)
+ ini Cycle2. Cycle1)

Body Cycle1 = inibody Cycle1.
selectSeller.
ini SD Handshake〈end SD Handshake〉.
end SD Handshake.
ini Cycle1.
Body Cycle1

120 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Cycle2 = ini Cycle2.
(inibody Cycle2. (w1. ini Cycle2. end Cycle2. Cycle2 + w2. Cycle2)
+ ini Cycle1. Cycle2)

Body Cycle2 = inibody Cycle2.
selectSeller.
ini SD Handshake〈end SD Handshake〉.
end SD Handshake.
ini SD Authenticate〈end SD Authenticate〉.
end SD Authenticate.
ini SD SearchSellerList〈end SD SearchSellerList〉.
end SD SearchSellerList.
ini Cycle2.
Body Cycle2

We report below the translation of the SearchSellerList sequence diagram.
Only two issues are worth mentioning about it.

– The input actions over the private names encrypt and decrypt in the agents
SM1 SearchSellerList and SM2 SearchSellerList are used to translate
the self-calls in the corresponding objects of the UML diagram. Also, com-
plementary actions are granted by the auxiliary parallel agent OUT (encrypt,
decrypt).

– The restricted name end DS is due to render the explicit return of the
message sent by the object DS of the SearchSellerList diagram. After such
a return message has been delivered, the monitor SD SearchSellerList of
the sequence diagram can pass the control back to the process ECommerce
via an output action over its end action, namely end SD SearchSellerList.

TRANS SearchSellerList =
(ν encrypt[10], decrypt[10], ini DS, ini SM1, ini SM2, ini LM, end DS)
(SD SearchSellerList | DS SearchSellerList | SM1 SearchSellerList |

SM2 SearchSellerList | LM SearchSellerList | OUT (encrypt, decrypt))

SD SearchSellerList = (ν m1, m2, m3[17], m4[17], m5, m6)
ini SD SearchSellerList(end SD SearchSellerList).
ini DS〈m1, m2〉.
ini SM1〈m1, m2, m3, m4〉.
ini SM2〈m3, m4, m5, m6〉.
ini LM〈m5, m6〉.
end DS.
end SD SearchSellerList.
SD SearchSellerList

DS SearchSellerList =
ini DS(putMes, returnPutMes).
putMes〈seller, searchItem〉.
returnPutMes(info).
end DS.
DS SearchSellerList

Performance Analysis of a UML Micro-business Case Study 121

SM1 SearchSellerList =
ini SM1(putMes, returnPutMes, secureSend 1, secureSend 2).
putMes(seller, searchItem).
encrypt.
secureSend 1〈encData, seller〉.
secureSend 2(encData, buyer).
decrypt.
returnPutMes〈info〉.
SM1 SearchSellerList

SM2 SearchSellerList =
ini SM2(secureSend 1, secureSend 2, searchList, putMes).
secureSend 1(encData, seller).
decrypt.
searchList〈data〉.
putMes(buyer, result).
encrypt.
secureSend 2〈encData, buyer〉.
SM2 SearchSellerList

LM SearchSellerList =
ini LM(searchList, putMes).
searchList(data).
putMes〈buyer, result〉.
LM SearchSellerList

5 Performance Analysis

The stochastic π-calculus specification of the web-based micro-business case
study was simulated using the BioSPI tool, an application based on the Logix
system, which implements Flat Concurrent Prolog (FCP) [10, 11]. We conclude
the paper by reporting on the performance evaluation that was carried out. In
particular, here we focus on three main issues: the time to serve concurrent
requests, the time to authenticate the buyer, and the complexity of the encryp-
tion/decryption algorithms.

The BioSpi tool allows the user to maintain a full record of the evolution
of each process in the system. The record specifies all the communications the
process has been involved in, the time and channel at which they occurred,
the communicating partner, and the processes resulting from each communica-
tion. Moreover, in BioSpi the user can dynamically set the number of instances
of processes. This is an essential feature when one is interested in comparing
slightly different configurations of the same system, with a distinct number of
components at a time.

The plots in Fig. 5 represent the time to serve concurrent requests in two
distinct cases: when one single Seller (1-Seller) is available (upper curve), and

122 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Fig. 5. Time to serve concurrent requests

Fig. 6. Authentication time

when five Sellers (5-Sellers) are available (lower curve). As expected, the global
system shows to be very sensitive to the number of available Sellers. Fixing a
certain response time we can derive the maximal number of Buyers which are
simultaneously allowed to access the system. For example, if the response time
is set to 10, then 35 Buyers can be allowed in the 1-Seller system, and 200 in
the 5-Sellers system, respectively.

The authentication time depends on both the number of parallel requests and
on the complexity of the cryptographic algorithms used for secure transmission
of data. The curves in Fig. 6 show the dependency of the authentication time on
the number of concurrent requests. For example, they make clear that the time
spent in authentication operations is negligible in the 1-Seller system when the
number of requests is greater than 50.

The plots in Fig. 7 show how the complexity of the cryptographic algorithms
can influence the relative authentication time, that in turn is obtained as a
ratio between the absolute authentication time and the time needed to serve
concurrent requests. The curve for 5-Sellers reveals, e.g., that if the encryption
algorithm takes more than 0.5 sec to run then it is the most influent factor for

Performance Analysis of a UML Micro-business Case Study 123

Fig. 7. Influence of cryptographic algorithms over authentication time

the time needed to serve concurrent requests and hence for the throughput of
the whole system.

Acknowledgements. We are grateful to Paola Lecca for her useful comments
on the subject, and to William Silverman for his support on the use of the BioSpi
tool.

References

1. BioSpi home page: http://www.wisdom.weizmann.ac.il/~biopsi/.
2. Booch, G., Rumbaugh, J. and Jacobson, I.: The Unified Modeling Language User

Guide, Addison-Wesley (1998).
3. Caraguili C., Piazza D., Mura I. et al.: Specification in UML of case studies. DE-

GAS project deliverable 24, http://www.omnys.it/degas/ (2002).
4. DEGAS home page: http://www.omnys.it/degas/.
5. Kalden R., Mierick I., Meyer M.: Wireless Internet Access Based on GPRS. IEEE

Personal Comm. 7, 8-18 (2000).
6. Milner R., Communicating and Mobile Systems: the π-calculus, Cambridge Uni-

versity Press (1999).
7. Pokozy-Korenblat K., Priami C.: Toward extracting pi-calculus from UML se-

quence and state diagrams. Proceedings of the workshop on Compositional ver-
ification of UML models’03, ENTCS, to appear (2003).

8. Priami C., Regev A., Silverman W. and Shapiro E.: Application of a stochastic
name passing calculus to representation and simulation of molecular processes.
Information Processing Letters 80: 25-31 (2001).

9. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.
Cambridge University Press (2001).

10. Shapiro E.: Concurrent prolog: a progress report. In Shapiro E., editor,
Concurrent Prolog (vol. 1), pages 157 - 187. MIT Press, Cambridge, Massachusetts
(1987).

11. Silverman W., Hirsh M., Houri A. and Shapiro E., The Logix system user manual,
Version 1.21 - Concurrent Prolog (vol. II). MIT Press (1987).

124 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Appendix: UML Specification of the Case Study

Fig. 8. E-Commerce activity diagram

Fig. 9. PrepareBasket activity diagram

Performance Analysis of a UML Micro-business Case Study 125

Fig. 10. Deployment diagram

Fig. 11. SearchSellerList sequence diagram

126 K. Pokozy-Korenblat, C. Priami, and P. Quaglia

Fig. 12. Handshake (top) and Authenticate (bottom) sequence diagrams

Efficient Information Propagation Algorithms
in Smart Dust and NanoPeer Networks�

Sotiris Nikoletseas and Paul Spirakis

Department of Computer Engineering and Informatics,
University of Patras and Computer Technology Institute (CTI), Greece

{nikole, spirakis}@cti.gr

Abstract. Wireless sensor networks are comprised of a vast number
of ultra-small, fully autonomous computing, communication and sens-
ing devices, with very restricted energy and computing capabilities, that
co-operate to accomplish a large sensing task. The efficient and robust
realization of such large, highly-dynamic and complex networking envi-
ronments is a challenging algorithmic and technological task.

In this work we present and discuss two protocols for efficient and
robust data propagation in wireless sensor networks: LTP (a “local tar-
get” optimization protocol) and PFR (a multi-path probabilistic for-
warding protocol). Furthermore, we present the NanoPeers architecture
paradigm, a peer-to-peer network of lightweight devices, lacking all or
most of the capabilities of their computer-world counterparts. We iden-
tify the problems arising when applying current routing and searching
methods to this nano-world, and present some initial solutions, using a
case study of a sensor network instance; Smart Dust.

1 Introduction

1.1 A Description of Wireless Sensor Networks

Recent dramatic developments in micro-electro-mechanical (MEMS) systems,
wireless communications and digital electronics have already led to the develop-
ment of small in size, low-power, low-cost sensor devices. Such extremely small
devices integrate sensing, data processing and wireless communication capabil-
ities. Current devices have a size at the cubic centimeter scale, a CPU running
at 4 MHz, some memory and a wireless communication capability at a 4kbps
rate. Also, they are equipped with a small but effective operating system and are
able to switch between “sleeping” and “awake” modes to save energy. Pioneering
groups (like the “Smart Dust” Project at Berkeley, the “Wireless Integrated Net-
work Sensors” Project at UCLA and the “Ultra low Wireless Sensor” Project at

� This work has been partially supported by the IST/FET Programme of the European
Union under contract number IST-2001-33116 (FLAGS) and within the 6FP under
contract 001907 (DELIS).

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 127–145, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

128 S. Nikoletseas and P. Spirakis

MIT) pursue further important goals, like a total volume of a few cubic millime-
ters and extremely low energy consumption, by using alternative technologies,
based on radio frequency (RF) or optical (laser) transmission.

Examining each such device individually might appear to have small utility,
however the effective distributed co-ordination of large numbers of such devices
may lead to the efficient accomplishment of large sensing tasks. Large numbers
of sensor nodes can be deployed in areas of interest (such as inaccessible terrains
or disaster places) and use self-organization and collaborative methods to form
a sensor network.

Their wide range of applications is based on the possible use of various sen-
sor types (i.e. thermal, visual, seismic, acoustic, radar, magnetic, etc.) in order
to monitor a wide variety of conditions (e.g. temperature, object presence and
movement, humidity, pressure, noise levels etc.). Thus, sensor networks can be
used for continuous sensing, event detection, location sensing as well as micro-
sensing. Hence, sensor networks have important applications, including (a) mil-
itary (like forces and equipment monitoring, battlefield surveillance, targeting,
nuclear, biological and chemical attack detection), (b) environmental applica-
tions (such as fire detection, flood detection, precision agriculture), (c) health
applications (like telemonitoring of human physiological data) and (d) home
applications (e.g. smart environments and home automation). For an excellent
survey of wireless sensor networks see [2] and also [10, 13].

1.2 Critical Challenges

The efficient and robust realization of such large, highly-dynamic, complex, non-
conventional networking environments is a challenging algorithmic and techno-
logical task. Features including the huge number of sensor devices involved, the
severe power, computational and memory limitations, their dense deployment
and frequent failures, pose new design, analysis and implementation aspects
which are essentially different not only with respect to distributed computing
and systems approaches but also to ad-hoc networking techniques.

We emphasize the following characteristic differences between sensor net-
works and ad-hoc networks:

– The number of sensor particles in a sensor network is extremely large com-
pared to that in a typical ad-hoc network.

– Sensor networks are typically prone to faults.
– Because of faults as well as energy limitations, sensor nodes may (perma-

nently or temporarily) join or leave the network. This leads to highly dynamic
network topology changes.

– The density of deployed devices in sensor networks is much higher than in
ad-hoc networks.

– The limitations in energy, computational power and memory are much more
severe in sensor networks.

Because of the above rather unique characteristics of sensor networks, efficient
and robust distributed protocols and algorithms should exhibit the following
critical properties:

Efficient Information Propagation Algorithms 129

Scalability

Distributed protocols for sensor networks should be highly scalable, in the sense
that they should operate efficiently in extremely large networks composed of
huge numbers of nodes. This feature calls for an urgent need to prove by analyt-
ical means and also validate (by large scale simulations) certain efficiency and
robustness (and their trade-offs) guarantees for asymptotic network sizes.

Efficiency

Because of the severe energy limitations of sensor networks and also because of
their time-critical application scenaria, protocols for sensor networks should be
efficient, with respect to both energy and time.

Fault-Tolerance

Sensor particles are prone to several types of faults and unavailabilities, and may
become inoperative (permanently or temporarily). Various reasons for such faults
include physical damage during either the deployment or the operation phase,
permanent (or temporary) cease of operation in the case of power exhaustion
(or energy saving schemes, respectively). The sensor network should be able to
continue its proper operation for as long as possible despite the fact that certain
nodes in it may fail.

For a further discussion on challenges and future problems in sensor nets
research, the reader may see [5, 6, 20].

1.3 Overview of This Work

We present, analyse and discuss two energy and time efficient protocols:

– The Local Target Protocol (LTP), that performs a local optimization trying
to minimize the number of data transmissions needed for the information to
reach the sink.

– The Probabilistic Forwarding Protocol (PFR), that creates redundant data
transmissions that are probabilistically optimized, to trade-off energy effi-
ciency with fault-tolerance.

Furthermore, we present the NanoPeers architecture paradigm, a peer-to-
peer network of lightweight devices, lacking all or most of the capabilities of their
computer-world counterparts. We identify the problems arising when we apply
current routing and searching methods to this nano-world, and present some
initial solutions, using a case study of a sensor network instance; Smart Dust.
Our position is that (i) experience gained through research and experimentation
in the field of P2P computing can be indispensable in environments of more
restricted computing capabilities, and that (ii) the proposed framework can be
the basis of numerous real-world applications, opening up several challenging
research problems.

130 S. Nikoletseas and P. Spirakis

2 LTP: A Hop-by-Hop Data Propagation Protocol

2.1 The Model

We adopt a two-dimensional (plane) framework: A smart dust cloud (a set of
particles) is spread in an area (for a graphical presentation, see Fig. 1).

Let d (usually measured in numbers of particles/m2) be the density of par-
ticles in the area. Let R be the maximum (radio/laser) transmission range of
each grain particle.

A receiving wall W is defined to be an infinite line in the smart-dust plane.
Any particle transmission within range R from the wall W is received by W. W
is assumed to have very strong computing power, able to collect and analyze re-
ceived data and has a constant power supply and so it has no energy constraints.
The wall represents in fact the authorities (the fixed control center) who the re-
alization of a crucial event should be reported to. The wall notion generalizes
that of the sink and may correspond to multiple (and/or moving) sinks. Note
that a wall of appropriately big (finite) length suffices.

Furthermore, there is a set-up phase of the smart dust network, during which
the smart cloud is dropped in the terrain of interest, when using special con-
trol messages (which are very short, cheap and transmitted only once) each
smart dust particle is provided with the direction of W. By assuming that each
smart-dust particle has individually a sense of direction, and using these control
messages, each particle is aware of the general location of W.

Sensor nodesSensor field

Control Center

Fig. 1. A Smart Dust Cloud

2.2 The Protocol

Let d(pi, pj) the distance (along the corresponding vertical lines towards W) of
particles pi, pj and d(pi,W) the (vertical) distance of pi from W. Let info(E)
the information about the realization of the crucial event E to be propagated.
Let p the particle sensing the event and starting the execution of the pro-
tocol. In this protocol, each particle p′ that has received info(E), does the
following:

Efficient Information Propagation Algorithms 131

– Search Phase: It uses a periodic low energy directional broadcast in or-
der to discover a particle nearer to W than itself. (i.e. a particle p′′ where
d(p′′, W) < d(p′, W)).

– Direct Transmission Phase: Then, p′ sends info(E) to p′′.
– Backtrack Phase: If consecutive repetitions of the search phase fail to dis-

cover a particle nearer to W, then p′ sends info(E) to the particle that it
originally received the information from.

Note that one can estimate an a-priori upper bound on the number of rep-
etitions of the search phase needed, by calculating the probability of success of
each search phase, as a function of various parameters (such as density, search
angle, transmission range). This bound can be used to decide when to backtrack.

For a graphical representation see Fig. 2, Fig. 3. The LTP protocol was in-
troduced in [9].

W
p'

beacon circle

a

-a

Fig. 2. Example of the Search Phase

W

p0

p1

p2

a1

p3

a0

a2

Fig. 3. Example of a Transmission

2.3 Analysis

We first provide some basic definitions.

Definition 1. Let hopt(p, W) be the (optimal) number of “hops” (direct, ver-
tical to W transmissions) needed to reach the wall, in the ideal case in which

132 S. Nikoletseas and P. Spirakis

particles always exist in pair-wise distances R on the vertical line from p to W.
Let Π be a smart-dust propagation protocol, using a transmission path of length
L(Π, p, W) to send info about event E to wall W. Let h(Π, p, W) be the ac-
tual number of hops (transmissions) taken to reach W. The “hops” efficiency of
protocol Π is the ratio

Ch =
h(Π, p, W)
hopt(p, W)

Clearly, the number of hops (transmissions) needed characterizes the energy
consumption and the time needed to propagate the information E to the wall.
Remark that hopt =

⌈
d(p,W)

R
⌉
, where d(p,W) is the (vertical) distance of p from

the wall W.
In the case where the protocol Π is randomized, or in the case where the

distribution of the particles in the cloud is a random distribution, the number of
hops h and the efficiency ratio Ch are random variables and one wishes to study
their expected values.

The reason behind these definitions is that when p (or any intermediate
particle in the information propagation to W) “looks around” for a particle as
near to W as possible to pass its information about E , it may not get any particle
in the perfect direction of the line vertical to W. This difficulty comes mainly
from three causes: a) Due to the initial spreading of particles of the cloud in
the area and because particles do not move, there might not be any particle
in that direction. b) Particles of sufficient remaining battery power may not be
currently available in the right direction. c) Particles may temporarily “sleep”
(i.e. not listen to transmissions) in order to save battery power.

Note that any given distribution of particles in the smart dust cloud may
not allow the ideal optimal number of hops to be achieved at all. In fact, the
least possible number of hops depends on the input (the positions of the grain
particles). We however, compare the efficiency of protocols to the ideal case. A
comparison with the best achievable number of hops in each input case will of
course give better efficiency ratios for protocols.

To enable a first step towards a rigorous analysis of smart dust protocols, we
make the following simplifying assumption: The search phase always finds a p′′

(of sufficiently high battery) in the semicircle of center the particle p′ currently
possessing the information about the event and radius R, in the direction towards
W. Note that this assumption on always finding a particle can be relaxed in the
following ways: (a) by repetitions of the search phase until a particle is found.
This makes sense if at least one particle exists but was sleeping during the failed
searches, (b) by considering, instead of just the semicircle, a cyclic sector defined
by circles of radiuses R−ΔR, R and also take into account the density of the
smart cloud, (c) if the protocol during a search phase ultimately fails to find a
particle towards the wall, it may backtrack.

We also assume that the position of p′′ is uniform in the arc of angle 2α around
the direct line from p′ vertical to W. Each data transmission (one hop) takes
constant time t (so the “hops” and time efficiency of our protocols coincide in this
case). It is also assumed that each target selection is stochastically independent

Efficient Information Propagation Algorithms 133

of the others, in the sense that it is always drawn uniformly randomly in the arc
(−α, α). We call this the “α-uniform” case.

The above assumptions may not be very realistic in practice, however, they
can be relaxed and in any case allow to perform a first effort towards providing
some concrete analytical results.

Lemma 1. The expected “hops efficiency” of the local target protocol in the α-
uniform case is

E(Ch) � α

sin α

for large hopt. Also
1 ≤ E(Ch) ≤ π

2
� 1.57

for 0 ≤ α ≤ π
2 .

Proof. Due to the protocol, a sequence of points is generated, p0 = p, p1, p2, . . . ,
ph−1, ph where ph−1 is a particle within W’s range and ph is part of the wall.
Let αi be the (positive or negative) angle of pi with respect to pi−1’s vertical
line to W. It is:

h−1∑
i=1

d(pi−1, pi) ≤ d(p, W) ≤
h∑

i=1

d(pi−1, pi)

Since the (vertical) progress towards W is then Δi = d(pi−1, pi) = R cos αi,
we get:

h−1∑
i=1

cos αi ≤ hopt ≤
h∑

i=1

cos αi

From Wald’s equation for the expectation of a sum of a random number of
independent random variables (see [18]), then

E(h− 1) · E(cos αi) ≤ E(hopt) = hopt ≤ E(h) · E(cos αi)

Now, ∀i, E(cos αi) =
∫ α

−α
cos x 1

2αdx = sin α
α . Thus

α

sin α
≤ E(h)

hopt
= E(Ch) ≤ α

sin α
+

1
hopt

Assuming large values for hopt (i.e. events happening far away from the wall,
which is the most interesting case in practice since the detection and propagation
difficulty increases with distance) we have (since for 0 ≤ α ≤ π

2 it is 1 ≤ α
sin α ≤

π
2) and the result follows.

2.4 Local Optimization: The Min-two Uniform Targets Protocol
(M2TP)

We further assume that the search phase always returns two points p′′, p′′′ each
uniform in (−α, α) and that a modified protocol M2TP selects the best of the two

134 S. Nikoletseas and P. Spirakis

points, with respect to the local (vertical) progress. This is in fact an optimized
version of the Local Target Protocol.

In a similar way as in the proof of the previous lemma, we prove the following
result:

Lemma 2. The expected “hops efficiency” of the “min two uniform targets”
protocol in the α-uniform case is

E(Ch) � α2

2(1− cos α)

for 0 ≤ α ≤ π
2 and for large h.

Now remark that

lim
α→0

E(Ch) = lim
α→0

2α

2 sin a
= 1

and

lim
α→π

2

E(Ch) =
(π/2)2

2(1− 0)
=

π2

8
� 1.24

Thus, we prove the following:

Lemma 3. The expected “hops” efficiency of the min-two uniform targets pro-
tocol is

1 ≤ E(Ch) ≤ π2

8
� 1.24

for large h and for 0 ≤ α ≤ π
2 .

Remark that, with respect to the expected hops efficiency of the local tar-
get protocol, the min-two uniform targets protocol achieves, because of the one
additional search, a relative gain which is (π/2− π2/8)/(π/2) � 21.5%.

3 PFR: A Probabilistic Multi-path Forwarding Protocol

The LTP protocol, as shown in the previous section manages to be very efficient
by always selecting exactly one next-hop particle, with respect to some opti-
mization criterion. Thus, it tries to minimize the number of data transmissions.
LTP is indeed very successful in the case of dense and robust networks, since in
such networks a next hop particle is very likely to be discovered. In sparse or
faulty networks however, the LTP protocol may behave poorly, because of many
backtracks due to frequent failure to find a next hop particle. To combine energy
efficiency and fault-tolerance, the Probabilistic Forwarding Protocol (PFR) has
been introduced.

Efficient Information Propagation Algorithms 135

3.1 The Model

We assume the case where particles are randomly deployed in a given area of
interest. Such a placement may occur e.g. when throwing sensors from an airplane
over an area.

As a special case, we consider the network being a lattice (or grid) deploy-
ment of sensors. This grid placement of grain particles is motivated by certain
applications, where it is possible to have a pre-deployed sensor network, where
sensors are put (possibly by a human or a robot) in a way that they form
a 2-dimensional lattice. Note indeed that such sensor networks, deployed in a
structured way, might be useful in precise agriculture, where humans or robots
may want to deploy the sensors in a lattice structure to monitor in a rather
homogenous and uniform way certain conditions in the spatial area of interest.
Certainly, exact terrain monitoring in military applications may also need some
sort of a grid-like shaped sensor network. Note also that Akyildiz et al in a recent
state of the art survey ([2]) do not exclude the pre-deployment possibility. Also,
[11] explicitly refers to the lattice case. Moreover, as the authors of [11] state in
an extended version of their work ([12]), they consider, for reasons of “analytic
tractability”, a square grid topology.

Let N be the number of deployed grain particles. There is a single point in
the network area, which we call the sink S, and represents a control center where
data should be propagated to.

We assume that each grain particle has the following abilities:

(i) It can estimate the direction of a received transmission (e.g. via the tech-
nology of direction-sensing antennae).

(ii) It can estimate the distance from a nearby particle that did the trans-
mission (e.g. via estimation of the attenuation of the received signal).

(iii) It knows the direction towards the sink S. This can be implemented
during a set-up phase, where the (very powerful in energy) sink broadcasts the
information about itself to all particles.

(iv) All particles have a common co-ordinates system.

Notice that GPS information is not needed for this protocol. Also, there is
no need to know the global structure of the network.

3.2 The Protocol

The PFR protocol is inspired by the probabilistic multi-path design choice for
the Directed Diffusion paradigm mentioned in [11]. The PFR protocol was first
proposed in [7]. Its basic idea of the protocol (introduced in [7]) lies in proba-
bilistically favoring transmissions towards the sink within a thin zone of particles
around the line connecting the particle sensing the event E and the sink (see
Fig. 4). Note that transmission along this line is energy optimal. However it is
not always possible to achieve this optimality, basically because certain sensors
on this direct line might be inactive, either permanently (because their energy
has been exhausted) or temporarily (because these sensors might enter a sleeping
mode to save energy). Further reasons include (a) physical damage of sensors,

136 S. Nikoletseas and P. Spirakis

(b) deliberate removal of some of them (possibly by an adversary in military ap-
plications), (c) changes in the position of the sensors due to a variety of reasons
(weather conditions, human interaction etc). and (d) physical obstacles blocking
communication.

The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase. Initially the protocol builds
(by using a limited, in terms of rounds, flooding) a sufficiently large
“front” of particles, in order to guarantee the survivability of the data
propagation process. During this phase, each particle having received
the data to be propagated, deterministically forwards them towards the
sink. In particular, and for a sufficiently large number of steps s = 180

√
2,

each particle broadcasts the information to all its neighbors, towards the
sink. Remark that to implement this phase, and in particular to count
the number of steps, we use a counter in each message. This counter
needs at most �log 180

√
2� bits.

Phase 2: The Probabilistic Forwarding Phase. During this phase,
each particle P possessing the information under propagation, calculates
an angle φ by calling the subprotocol “φ-calculation” (see description
below) and broadcasts info(E) to all its neighbors with probability IPfwd

(or it does not propagate any data with probability 1 − IPfwd) defined
as follows:

IPfwd =

{
1
φ
π

if φ ≥ φthreshold

otherwise

where φ is the angle defined by the line EP and the line PS and
φthreshold = 134o (the selection reasons of this φthreshold will become
evident in Section 3.4).

In both phases, if a particle has already broadcast info(E) and receives it
again, it ignores it. Also the PFR protocol is presented for a single event tracing.
Thus no multiple paths arise and packet sizes do not increase with time.

Remark that when φ = π then P lies on the line ES and vice-versa (and
always transmits).

If the density of particles is appropriately large, then for a line ES there
is (with high probability) a sequence of points “closely surrounding ES” whose
angles φ are larger than φthreshold and so that successive points are within trans-
mission range. All such points broadcast and thus essentially they follow the line
ES (see Fig. 4).

The φ-calculation subprotocol (see Fig. 5)
Let Pprev the particle that transmitted info(E) to P .

(1) When Pprev broadcasts info(E), it also attaches the info |EPprev| and
the direction −−−−→PprevE.

(2) P estimates the direction and length of line segment PprevP , as described
in the model.

Efficient Information Propagation Algorithms 137

S

E

Particles that
particiapate in

forwarding path

Fig. 4. Thin Zone of particles

S
E

Pprev
P

Fig. 5. Angle φ calculation example

(3) P now computes angle (̂EPprevP), and computes |EP | and the direction
of −−→PE (this will be used in further transmission from P).

(4) P also computes angle (̂PprevPE) and by subtracting it from (̂PprevPS)
it finds φ.

Notice the following:

(i) The direction and distance from activated sensors to E is inductively
propagated (i.e. P becomes Pprev in the next phase).

(ii) The protocol needs only messages of length bounded by log A, where A is
some measure of the size of the network area, since (because of (i) above) there
is no cumulative effect on message lengths.

Essentially, the protocol captures the intuitive, deterministic idea “if my dis-
tance from ES is small, then send, else do not send”. We have chosen to en-
hance this idea by random decisions (above a threshold) to allow some local
flooding to happen with small probability and thus to cope with local sensor
failures.

3.3 Properties of PFR

Any protocol Π solving the data propagation problem must satisfy the following
three properties:

138 S. Nikoletseas and P. Spirakis

– Correctness. Π must guarantee that data arrives to the position S, given
that the whole network exists and is operational.

– Robustness. Π must guarantee that data arrives at enough points in a
small interval around S, in cases where part of the network has become
inoperative.

– Efficiency. If Π activates k particles during its operation then Π should
have a small ratio of the number of activated over the total number of
particles r = k

N . Thus r is an energy efficiency measure of Π.

We show that this is indeed the case for PFR.
Consider a partition of the network area into small squares of a fictitious

grid G (see Fig. 6). Let the length of the side of each square be l. Let the
number of squares be q. The area covered is bounded by ql2. Assuming that
we randomly throw in the area at least αq log q = N particles (where α > 0
a suitable constant), then the probability that a particular square is avoided
tends to 0. So with very high probability (tending to 1) all squares get parti-
cles.

We condition all the analysis on this event, call it F , of at least one particle
in each square.

S

EParticles

Lattice
Dissection

Fig. 6. A Lattice Dissection G

3.4 The Correctness of PFR

Without loss of generality, we assume each square of the fictitious lattice G to
have side length 1.

We have proved the correctness of the PFR protocol, by using a geometric
analysis. We below sketch the proof.

Consider any square Σ intersecting the ES line. By the occupancy argument
above, there is with high probability a particle in this square. Clearly, the worst
case is when the particle is located in one of the corners of Σ (since the two
corners located most far away from the ES line have the smallest φ-angle among
all positions in Σ).

By some geometric calculations, we finally prove that the angle φ of this par-
ticle is φ > 134o. But the initial square (i.e. that containing E) always broadcasts

Efficient Information Propagation Algorithms 139

and any intermediate intersecting square will be notified (by induction) and thus
broadcast because of the argument above. Thus the sink will be reached if the
whole network is operational.

Lemma 4. PFR succeeds with probability 1 in sending the information from E
to S given the event F .

3.5 The Energy Efficiency of PFR

We consider the fictitious lattice G of the network area and let the event F hold.
There is (at least) one particle inside each square. Now join all nearby particles
of each particle to it, thus by forming a new graph G′ which is “lattice-shaped”
but its elementary “boxes” may not be orthogonal and may have varied length.
When G′s squares become smaller and smaller, then G′ will look like G. Thus, for
reasons of analytic tractability, we assume that particles form a lattice (see Fig.
7). They also assume length l = 1 in each square, for normalization purposes.
Notice however that when l → 0 then “G′ → G” and thus all results in this
Section hold for any random deployment “in the limit”.

The analysis of the energy efficiency considers particles that are active but
are as far as possible from ES. Thus the approximation is suitable for remote
particles.

We estimate an upper bound on the number of particles in an n × n (i.e.
N = n × n) lattice. If k is this number then r = k

n2 (0 < r ≤ 1) is the “energy
efficiency ratio” of PFR.

More specifically, we prove the (very satisfactory) result below. They consider
the area around the ES line, whose particles participate in the propagation
process. The number of active particles is thus, roughly speaking, captured by
the size of this area, which in turn is equal to |ES| times the maximum distance
from |ES| (where maximum is over all active particles).

This maximum distance is clearly a random variable. To calculate the expec-
tation and variance of this variable, we basically “upper bound” the stochastic
process of the distance from ES by a random walk on the line, and subsequently
“upper bound” this random walk by a well-known stochastic process (i.e. the
“discouraged arrivals” birth and death Markovian process, see e.g. [14]). Thus
we can prove the following:

Sink

Sensor
Particles

E

Fig. 7. A Lattice Sensor Network

140 S. Nikoletseas and P. Spirakis

Theorem 1. The energy efficiency of the PFR protocol is Θ
((

n0
n

)2
)

where

n0 = |ES| and n =
√
N , where N is the number of particles in the network. For

n0 = |ES| = o(n), this is o(1).

3.6 The Robustness of PFR

To prove the following robustness result, we consider particles “very near” to
the ES line. Clearly, such particles have large φ-angles (i.e. φ > 134o). Thus,
even in the case that some of these particles are not operating, the probability
that none of those operating transmits (during the probabilistic phase 2) is very
small. Thus, we can prove the following:

Lemma 5. PFR manages to propagate the crucial data across lines parallel to
ES, and of constant distance, with fixed nonzero probability (not depending on
n, |ES|).

4 NanoPeer Networks and P2P Worlds

The peer-to-peer (P2P) paradigm has emerged to be one of the hottest sub-
jects of research and development of computer science during the last few years.
After the advent of Napster ([17]) and Seti@Home ([19]), researchers have fo-
cused on the fields of content and resource sharing P2P systems, usually dealing
with such tasks as indexing and searching, routing, security and anonymity, re-
source exploitation and load balancing, etc. This is a natural consequence of the
widespread use of such systems.

However, what researchers usually take for granted (i.e. average process-
ing/storage/network capacities and power supply of modern computers) may
not exist when we take a step further and deal with devices other than personal
computers. Such restrictions may include little or no storage capacity or mem-
ory at the peers, highly unstable communication links, and power consumption
issues, usually inherent in the fields of embedded devices, sensor networks, and
ubiquitous computing in general.

We examine Smart Dust systems ([4]) - an inherently pure P2P system - and
present NanoPeer Networks: an approach to P2P networks comprised of micro-
devices acting as lightweight peers in a P2P overlay, with restricted computing
and energy capabilities. We try to identify the problems arising when applying
computer-world techniques to this nano-world, attempt to locate the cause of
such discrepancies, and propose outlines of relevant solutions.

We further argue that, due to the analogy between sensor networks and pure
P2P systems, experience gathered through research and experimentation in the
P2P field, can be indispensable when dealing with real-world problems in the
nano-level. As we’ll see, many of the issues arising when dealing with NanoPeers,
have a computer-world counterpart which has already been dealt with by P2P
scientists, thus making computer-world P2P systems a first-class testbench for
nano-level solutions. This NanoPeers paradigm was first proposed in [21].

Efficient Information Propagation Algorithms 141

4.1 Critique: Intersection of P2P Worlds

What happens if we try to apply computer-world methods and protocols in
the P2P world of SDCs? As already stated, existing routing/communication
protocols are not appropriate for such devices.

First of all, available processing capabilities (i.e. CPU, memory, etc.) are
very restricted when it comes to “grain” particles. DHT-based routing protocols
require a minimum of O(log n) neighbors, while flooding translates to high overall
power consumption. Remember, moreover, that Smart Dust systems are usually
at the extreme of having practically no memory at all.

Second, particles are highly dynamic; they may ”sleep” or fail at will. This,
coupled with the restricted available memory, gives rise to new problems. For
example, in a SDC, neighbor discovery must be done at every search operation,
also taking into consideration power consumption issues.

Last but not least, the connectivity of particles is also restricted; a particle can
contact only particles lying within a specific area. For one of these NanoPeers
to access another peer outside its area of coverage, relaying-like solutions are
required ([9]).

4.2 Smart-Dust and P2P Applications: Parallel Universes?

As pointed out in relevant literature ([2]), some of the main factors influencing
the design and deployment of a sensor network, include fault-tolerance, scala-
bility, hardware constraints, the network topology, the transmission media, and
power consumption (as dictated by communication and data processing require-
ments). Sounds familiar? Let’s take a step deeper and have a look at the domi-
nant characteristics of SDCs and sensor networks (SNs) in general:

– The number of sensor nodes in a SN is very high – several orders of magnitude
higher than the nodes in simple ad-hoc networks.

– Sensor nodes in a SN are deployed in a quite dense manner – as high as 20
sensor nodes per m3. This, coupled with the fact that SN nodes mainly use
broadcast communication, with a transmission range in the order of some
meters, gives us a very dense, high-outdegree graph of sensor nodes and their
interconnections.

– SN nodes are prone to failures of any kind, ranging from a simple power
failure to the complete destruction of nodes by external factors (e.g. hostile
action, dire environmental conditions, etc.).

– Sensor nodes have limited computing capabilities and power consumption
capacity. For example, SDC particles may be at the extreme of having no
memory at all.

– Bandwidth resources are also scarce. SDC particles are usually equipped with
transmitters with transmission rates in the order of tens of kbps, although
it’s possible to use faster but greedier, with regards to energy consumption,
transmitters (e.g. Bluetooth can achieve a 1Mbps transmission rate, for an
energy consumption high enough to prevent it from being used in SDC).

– The topology of SNs may change very frequently, especially when sensor
nodes are attached to mobile objects, or when they are deployed in an open

142 S. Nikoletseas and P. Spirakis

environment, with multiple moving obstacles in the way. Node failures also
result in topology changes, albeit these are permanent ones.

Compare the above to the status-quo of the Gnutella peer-to-peer network
overlay:

– The number of nodes in the Gnutella network is very high – several orders of
magnitude higher than nodes in traditional distributed systems (e.g. Mosix
[16], Beowulf [3], etc.).

– Nodes in Gnutella are interconnected according to a power-law topology, fol-
lowing the small-world paradigm. Due to the quasi-complete connectivity of
the underlying TCP/IP network, Gnutella nodes may have multiple neigh-
bor nodes. Moreover, Gnutella also uses broadcasting (flooding) techniques
to propagate information through the overlay.

– Gnutella nodes are selfish ([1]); nearly 70% of the nodes share no files with
the rest of the community. Without loss of generality, we can models such
peers as computing entities of ultra-low computing capabilities, much like
nodes in a sensor network.

– Following the above distribution, most Gnutella nodes have very low con-
nection speeds (in the order of tens of kbps), while there do exist some (but
few) nodes with high-bandwidth connections (e.g. 1Mbps lines).

– “Free-riders”, are usually users entering the Gnutella overlay over dial-up
modem lines, and may exit the overlay without prior notice (e.g. due to a
modem hang-up). This makes such nodes highly volatile and results in a
frequently changing network topology. For example, [22] has shown that the
half-life – the time required for half of the peer population to be replaced
due to joins and leaves – of MojoNation ([15]) was less than one hour!

The similarities of sensor networks and pure P2P computer-world systems
extend well beyond the above mentioned characteristics. For example, Gnutella
entered the realm of hybrid P2P systems, with the introduction of “UltraPeers”
by LimeWire; in about the same time, researchers in the sensor networks’ field
proposed a “backbone”-based architecture ([8]), where some “higher-order” sen-
sor nodes were injected into a sensor network and took over the communication
tasks.

However, as already mentioned, there exist more than a handful of differences
between the two worlds. For one, computers have no energy limitations (other
than that they rely on the public electricity network’s being stable) and their
storage capacity and computing capabilities are growing at a quasi-exponential
rate. SDC particles, bounded by the limitations in size and energy, don’t (and
probably will never) have access to such equipment as a multi-gigabyte hard disk
or a multi-gigahertz CPU or a multi-megabyte RAM.

5 Smart-Dust NanoPeers: One Step Further

So far, the SDC model features a single “wall” or “sink”. We hereby propose some
extensions to this model, borrowed from the computer-world P2P experience.

Efficient Information Propagation Algorithms 143

5.1 Multi-“wall”/“Sink” Smart Dust Systems

Computer-world P2P systems use a set of servers, scattered around the net, to
handle authentication and bootstrapping of new nodes. Thus, we can imagine a
SDC with multiple walls (e.g. particles “hovering” in a cube, whose all six sides
are walls). Note that the SDC model assumes that all particles find out about
the position of their wall during bootstrapping.

Multiple-sink systems have been also studied in [11], although their system is
pull-based; the walls send out queries towards an area of interest – thus creating
(possibly several) path(s) of hops on the smart dust plane – and replies are
piggybacked on this very path. What happens, though, if we are interested in a
push-based system (i.e. in a system were it’s the particles that decide when they
have something important to say to the rest of the world)?

A first naive solution to the multiple-wall problem is for the wall(s) to inform
particles of their existence, in a P2P recursive manner: every wall registers with
all particles within reach, and registration information is propagated recursively,
using the inexpensive digital radio transceivers. Particles are then responsible
for selecting the wall that is closer to them.

5.2 P2P Worlds: A Hybrid Model

A better and more scalable solution to the problems that may arise in the SDC
P2P world, would be to have a Hybrid P2P system, consisting of heterogeneous
particles, with escalating processing capabilities, network bandwidth, area of
coverage, and power supply, allowing for multiple levels of peers.

In this scenario, every set of homogeneous particles would form a separate
Smart Dust Layer (or SDL). Higher order SDLs would then act as “walls” for
lower order SDLs, with the actual wall(s) being seamlessly incorporated in this
model. Imagine such a world were micro-peers coordinate the operation of nano-
peers within their area of coverage, milli-peers coordinate micro-peers etc.

Particles would then contact the higher-order particle that is closer to them
(discovered via the broadcast beacon mode). To go one step further, we can have
particles use only the low-consumption digital radio transceiver to broadcast
observations, under the virtual “umbrella” of one or more higher-order particles,
much in the way overlapping GSM cells operate.

5.3 An Example Application of P2P Worlds

Parcicles: Trails on Smart-Dust Suppose that V ery Important ParcelsTM

(V IPTM), a (quite imaginary) major postal delivery firm, implants in every par-
cel shipped a parcicle - a low-cost, cut-down version of a conventional particle
(i.e. a NanoPeer), with all sensors stripped-off, featuring only the communica-
tion equipment, plus a unique id number (given to customers along with their
receipts).

Imagine that each box carrying parcels features a “higher-order” particle (i.e.
an MicroPeer), or a set of such particles, equipped with a better battery and
some memory. Let’s assume that more such particles (i.e. MilliPeers) are spread

144 S. Nikoletseas and P. Spirakis

around V IPTM ’s warehouses, with each warehouse having a set of servers (e.g.
one per department), and with all of these servers across all warehouses being
interconnected in a P2P network. Assume that parcicles periodically register
with their box’s particle(s), with registration information being propagated and
cached all the way up to the local servers.

Suppose now that a customer of V IPTM , wishes to track down a parcel’s
current position. She would then utilize the all-secure V IP − TrackerTM P2P
software to query the servers’ P2P overlay for the one having last seen her
parcel. Verification of the parcel’s actual position could be done on-the-fly, with
this last server sending an “are-you-there” query all the way down to the parcel’s
parcicle (or to the particle caching the parcicle’s registration, should the latter
be asleep). Note that there is both horizontal and vertical communication, within
and across the layers of the architecture, in order to register information and to
answer queries.

References

1. E. Adar and B. Huberman: Free riding on Gnutella. Technical report, Xerox
PARC, 2000.

2. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci: Wireless sensor
networks: a survey. In the Journal of Computer Networks, Volume 38, pp. 393-
422, 2002.

3. Beowulf. http://www.beowulf.org/.
4. Berkeley Wireless Research Center. http://bwrc.eecs.berkeley.edu/.
5. A. Boukerche and S. Nikoletseas: Protocols for Data Propagation in Wireless Sen-

sor Networks: A Survey. Chapter in the Book “Wireless Communications Systems
and Networks”, Editor Mohsen Guizani, Kluwer Academic Publishers, Date Pub-
lished: 06/2004, ISBN: 0306481901, 718 p.

6. A. Boukerche and S. Nikoletseas: Energy Efficient Algorithms in Wireless Sensor
Networks. Invited Book Chapter, Springer Verlag, to appear in 2004.

7. I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas and P. Spirakis: A Probabilistic
Algorithm for Efficient and Robust Data Propagation in Smart Dust Networks. In
the Proceedings of the 5th European Wireless Conference on Mobile and Wireless
Systems beyond 3G (EW 2004), pp. 344-350, 2004. Also, invited paper in the
Journal of Adhoc Networks.

8. I. Chatzigiannakis, S.Nikoletseas, and P.Spirakis: Distributed communication al-
gorithms for ad-hoc mobile networks. In the Journal of Parallel and Distributed
Computing (JPDC), Special Issue on Mobile Ad-hoc Networking and Computing,
63 (2003) 58-74, 2003.

9. I. Chatzigiannakis, S. Nikoletseas, and P. Spirakis: Smart Dust Protocols for Local
Detection and Propagation. In Proc. of Principles of Mobile Computing (POMC),
ACM Press, pp. 9-16, 2002. Also, in the ACM/Baltzer MONET Journal, Special
issue on Algorithmic Solutions for Wireless, Mobile, Ad Hoc and Sensor Networks,
accepted, to appear in 2004.

10. D. Estrin, R. Govindan, J. Heidemann and S. Kumar: Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proc. 5th ACM/IEEE International
Conference on Mobile Computing – MOBICOM’1999.

Efficient Information Propagation Algorithms 145

11. C. Intanagonwiwat, R. Govindan and D. Estrin: Directed Diffusion: A Scalable and
Robust Communication Paradigm for Sensor Networks. In Proc. 6th ACM/IEEE
International Conference on Mobile Computing – MOBICOM’2000.

12. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva: Directed
Diffusion for Wireless Sensor Networking. Extended version of [11].

13. J.M. Kahn, R.H. Katz and K.S.J. Pister: Next Century Challenges: Mobile Net-
working for Smart Dust. In Proc. 5th ACM/IEEE International Conference on
Mobile Computing, pp. 271-278, September 1999.

14. L. Kleinrock: Queueing Systems, Theory, Vol. I, pp. 100. John Wiley & Sons,
1975.

15. Autonomous Zone Industries. Mojonation. http://www.mojonation.com/.
16. Mosix. http://www.mosix.org/.
17. Napster. http://www.napster.com/.
18. S. M. Ross: Stochastic Processes, 2nd Edition. John Wiley and Sons, Inc., 1995.
19. Seti@Home. http://setiathome.ssl.berkeley.edu/.
20. P. Spirakis: Algorithmic and Foundational Aspects of Sensor Systems. Invited

talk at the 1st International Workshop on Algorithmic Aspects of Wireless Sensor
Networks (ALGOSENSORS 04), Eds S. Nikoletseas and J. Rolim LNCS 3121,
Springer Verlag, 2004.

21. P. Triantafillou, N. Ntarmos, S. Nikoletseas, and P. Spirakis: NanoPeer Networks
and P2P Worlds. In Proc. 3rd IEEE International Conference on Peer-to-Peer
Computing (P2P 2003), September 2003.

22. B. Wilcox-O’Hearn: Experiences deploying a large-scale emergent network. In
Proc. of IPTPS ’02.

The Kell Calculus: A Family of Higher-Order
Distributed Process Calculi

Alan Schmitt and Jean-Bernard Stefani

INRIA Rhône-Alpes 655 Avenue de l’Europe,
Montbonnot, 38334 St Ismier, France

Abstract. This paper presents the Kell calculus, a family of distributed process
calculi, parameterized by languages for input patterns, that is intended as a basis
for studying component-based distributed programming. The Kell calculus is built
around a π-calculus core, and follows five design principles which are essential
for a foundational model of distributed and mobile programming: hierarchical
localities, local actions, higher-order communication, programmable membranes,
and dynamic binding. The paper discusses these principles, and defines the syntax
and operational semantics common to all calculi in the Kell calculus family. The
paper provides a co-inductive characterization of contextual equivalence for Kell
calculi, under sufficient conditions on pattern languages, by means of a form
of higher-order bisimulation called strong context bisimulation. The paper also
contains several examples that illustrate the expressive power of Kell calculi.

Keywords: Process calculi, distributed programming, mobile code, ambients,
components, higher-order languages, higher-order bisimulation.

1 Introduction

Wide-area distributed systems and their applications are increasingly built as heteroge-
neous, dynamic assemblies of software components. Such components can be down-
loaded from different sources, can spontaneously interact across the Internet, and may
fail, maliciously or accidentally, in many ways. In that context, a model for wide-area
distributed programming should provide the means to describe and reason about such
component assemblies, as well as to control their dynamic configuration (which compo-
nents to connect, which components to sandbox for security, from which trusted location
to download a component, which faulty component to replace, etc).

In the past fifteen years or so, there have been numerous works aiming at defin-
ing wide-area distributed programming models, especially in the area of distributed
process calculi (see e.g. [11, 14] for recent surveys of distributed process calculi and
process calculi with localities), as well as in the area of component-based programming
and software architecture (see e.g. [21] for a recent overview of formal approaches to
component-based programming). Distributed process calculi are especially interesting
as foundations for distributed programming for they allow to formally elicit, in a concise
form, key operators and programming primitives which can then be analyzed in different
ways (expressive power, semantical equivalences, etc), and which serve as a basis for
additional developments (type systems, specification logics, and verification tools).

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 146–178, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 147

In the production of the last fifteen years, we can single out three major kinds of
distributed process calculi:

1. Variants of the first-order π-calculus with localities and migration primitives, in-
cluding notably the Distributed Join calculus [16, 15], the Dπ calculus [19], lsdπ
[30], Nomadic Pict [38], and the Seal calculus [10], .

2. Variants of Mobile Ambients, including notably the original Mobile Ambients [9],
Safe Ambients [23], Safe Ambients with passwords [26], Boxed Ambients [6], New
Boxed Ambients [7], the M3 calculus [13], and the calculus of Bounded Capacities
[3].

3. Distributed higher-order calculi, including Facile/CHOCS [22, 36], higher-order
variants of Dπ [39, 18], Klaim [28, 29], and the M-calculus [33].

Interestingly, the first two kinds of calculi above share the same concern: allowing
process mobility while avoiding an explicitly higher-order calculus, on the grounds
that the semantical theory of higher-order process calculi is much harder than that of
first-order calculi. We shall argue below that such a concern is ill-founded, for two
main reasons. First, interesting reconfiguration phenomena in distributed assemblies of
components are inherently higher-order and can be given a more direct account using
higher-order communications. Second, process mobility remains an inherently higher-
order operation with the same semantical difficulties.

Among higher-order calculi, the M-calculus is the only one, to our knowledge, to
provide hierarchical and programmable localities. We argue below that such localities
are necessary to account for notions of components, as well as to provide extensive
isolation capabilities which are essential for security and fault handling. Unfortunately,
with its multiple routing rules, the M-calculus is rather complex, and developing directly
a suitable bisimulation theory for it seems a daunting task. The Kell calculus we study
in this paper has been developed both as a simplification and a generalization of the M-
calculus. In particular, the Kell calculus has simple communication rules across locality
boundaries, which subsume the complex routing rules of the M-calculus. Also, the Kell
calculus is in fact a family of higher-order process calculi with localities, which share the
same basic operational semantics rules, but differ in the language used to define receipt
patterns in input constructs.

The simpler constructs of the Kell calculus (compared to those of the M-calculus)
allow us to develop a theory of strong bisimulation and a natural notion of contextual
equivalence for the Kell calculus. Under sufficient conditions on pattern languages, we
obtain a co-inductive characterization of contextual equivalence in terms of a form of
higher-order bisimulation, which, following Sangiorgi, we call strong context bisimula-
tion. Interestingly, strong context bisimulation for the Kell calculus is no more complex
than higher-order bisimulations that have been proposed for Ambient calculi and for the
Seal calculus. This lends support to our claim that the semantical theory of higher-order
process calculi need not be more complicated than for first-order process calculi with
mobility.

This paper is organized as follows. In Section 2, we review the main considerations
behind the different constructs of the Kell calculus, and discuss related work in that light.
In section 3 we define the syntax and operational semantics of the Kell calculus, and
prove that the reduction semantics coincides with a labelled transition system semantics,

148 A. Schmitt and J.-B. Stefani

under sufficient conditions on the pattern language used. In section 4, we introduce a
strong contextual equivalence for the Kell calculus which we prove to coincide with
strong context bisimulation. In section 5, we discuss several instances of Kell calculi,
and give several examples that illustrate the expressive power of these calculi. Section
6 concludes the paper with a discussion of further work.

2 Design Principles

The Kell calculus is built around a π-calculus core, and obeys five main design principles
which we consider important for a foundational model of distributed programming:
higher-order communications, hierarchical localities, programmable membranes, local
actions, and dynamic binding. In this section we motivate these design principles, we
introduce informally the main constructs of the Kell calculus, and we discuss related
work in the light of these principles.

π-Calculus Core. The π-calculus is a standard of expressivity and a reference for con-
current computing. The Kell calculus has the same basic constructs than the π-calculus.
In particular, we have:

– Binary communication on named channels: an output on channel a is noted a〈w〉.T ,
where w is an argument, and T is continuation; an input on channel a can take the
form ξ �P , where ξ is an input pattern (e.g. a〈x〉, with x an input variable), and P
is a process.

– Parallel composition of processes: (P | Q) denotes the parallel composition of
processes P and Q.

– Restriction: νa.P denotes the restriction of name a in process P (or, equivalently,
the creation of a fresh name a whose initial scope is P).

– A null process, 0, that does not perform any action.

The Kell calculus family arises from different choices for the language of input
patterns. Keeping the Kell calculus parametric in the language of input patterns, yielding
a family of Kell calculi, is motivated by two main reasons:

1. Calculi of different expressive power can be obtained by varying the language of
input patterns. For instance, [8] introduces a π-calculus with structured channel
names and proves that the π-calculus variant obtained is strictly more expressive
than the (synchronous) π-calculus. We present in the paper several Kell calculus
instances, with increasing expressive power. By just varying the pattern language, we
obtain calculi with name-passing, name matching and name-unmatching operators,
polyadic communications, Join calculus-like patterns, and tuple-matching.

2. Sophisticated pattern matching capabilities are extremely useful in practical pro-
gramming languages, as demonstrated by pattern matching constructs in functional
languages such as OCaml. Jocaml and Polyphonic C# highlight the usefulness of
Join-calculus-like input patterns for practical concurrent programming. By allowing
pattern matching in Kell calculus input constructs, we can provide foundations for
distributed programming languages with filtering. Abstracting the pattern language
allows us to derive results (e.g. for the characterization of contextual equivalence)
that hold for a variety of Kell calculi, with different filtering characteristics.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 149

Hierarchical Localities. Hierarchical localities are characteristic of the Distributed Join
calculus and of Ambient calculi. Localities in the Kell calculus are noted, classically,
a[P], where a is the name of the locality, and P is a process. Intuitively, a[P] can be
read “process P executes at location a”, or “a[P] is a component named a, with state
(or behavior) P ”. A process P can in turn comprise a parallel composition of named
localities. A named locality a[P] is the Kell calculus is called a kell1.

The introduction of hierarchical localities in the Kell calculus is motivated by two
main considerations:

1. The hardware and software structure of distributed systems almost always takes the
form of hierarchies of (named) localities. For instance, a wide area network con-
nects local-area networks, which comprise several machines, which execute several
virtual machines (residing in different user address spaces), that provide different
thread pools for running separate applications. This hierarchy constitutes a contain-
ment hierarchy with different failure semantics and control semantics. For instance,
a failure of the wide-area network may prevent communication between local-area
networks but does not hamper communication internal to a local-area network. In
contrast, the failure of a machine will cause the failure of all the virtual machines
that it executes. Also, a machine (or its operating system) may kill any of the virtual
machines it runs, whereas a local area network cannot shut down any of the machines
it hosts. Named localities in the Kell calculus provide a way to model such a hierar-
chy. This is useful to develop distributed management applications, concerned e.g.
with component deployment, security management (including building firewalls for
access control), and fault management (including isolating faulty subsystems). The
approach to the secure execution of un-trusted components by means of wrappers
championed by Boxed-π [34] illustrates the use of named hierarchical localities for
isolation purposes.

2. The structure of software systems built by assembly of software components can
be modelled as hierarchies of named localities. We illustrate this in Section 5, with
the sketch of the modelling in the Kell calculus of a hierarchical component model,
representative of recent work on architecture description languages (see [25] for
a recent survey of architecture description languages). Allowing both sharing and
containment in software structures has for a long time been recognized as an im-
portant requirement in object-oriented programming, as witnessed by the numerous
works dealing with containment types for object systems (see e.g. [12] for a recent
work on this subject, and [1] for a use of containment types in a Java-based software
component model).

Interestingly, apart from the M-calculus, no higher-order distributed process calculus
provides hierarchical localities.

Local Actions. In the Kell calculus, computing actions can take four simple forms,
illustrated below with simple patterns:

1 The word “kell” is intended to remind of the word “cell”, in a loose analogy with biological
cells.

150 A. Schmitt and J.-B. Stefani

1. Receipt of a local message, as in the reduction below, where a message, a〈Q〉.T ,
on port a, bearing the process Q and the continuation T , is received by the trigger
a〈x〉 �P :

a〈Q〉.T | (a〈x〉 �P) → T | P{Q/x}
2. Receipt of a message originated from the environment of a kell, as in the reduction

below, where a message, a〈Q〉.T , on port a, bearing the process Q and contination
T , is received by the trigger a〈x〉↑ �P , located in kell b :

a〈Q〉.T | b
[
a〈x〉↑ �P

]
.S → T | b [P{Q/x}] .S

In input pattern a〈x〉↑, the arrow ↑ denotes a message that should come from the
outside of the immediately enclosing kell.

3. Receipt of a message originated from a sub-kell, as in the reduction below, where a
message, a〈Q〉.T , on port a, bearing the process Q and continuation T , and coming
from sub-kell b, is received by the trigger a〈x〉↓ �P , located in the parent kell of
kell b:

(a〈x〉↓ �P) | b [a〈Q〉.T | R] .S → P{Q/x} | b [T | R] .S

In pattern a〈x〉↓, the arrow ↓ denotes a message that should come from the inside
of a sub-kell.

4. Passivation of a kell, as in the reduction below, where the sub-kell named a is
destroyed, and the process Q it contains is used in the guarded process P :

a [Q] .T | (a [x] �P) → T | P{Q/x}

Actions of the form 1 above are standard π-calculus actions. Actions of the form 2
and 3 are just extensions of the message receipt action of the π-calculus to the case of
triggers located inside a kell. They can be compared to the communication actions in
the Seal calculus and in the Boxed Ambients calculus. Actions of the form 4 are peculiar
to the Kell calculus. They allow the environment of a given kell to exercise control over
the execution of the process located inside this kell. Notice that the construct a[P].Q
plays a dual role: that of a locus of computation since process P may execute within
a and receive messages from the environment of a, and that of a message that may be
consumed.

The different actions in the Kell calculus are all local actions. This means that atomic
actions in the calculus occur entirely within the context of a locality, or at the boundary
between a locality and enclosing environment. Let us explain in detail what this means.
Consider the configuration C

Δ= c[a[P] | b[Q] | S | . . .]. Localities a[P] and b[Q], which
act as separate loci of computation, share a global communication medium, represented
by the enclosing locality named c. The locality c can be considered a model of some
communication network or computational environment, for its sub-localities.

What the principle of local actions forbids, if localities are supposed to model distinct
locations in network space, is an event that would involve two remote localities a and
b in one atomic action, without the mediation of the enclosing locality. For instance,
the locality principle would forbid a reduction such as the following one, which is
reminiscent of the in primitive in Mobile Ambients):

(†) a [c〈P 〉 | R] | b [(c〈x〉 �x) | Q)] → a [R] | b [P | Q]

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 151

Interestingly, note that, by the same reasoning, we can consider as local a reduction
of the form:

(††) a[c〈P 〉 | R] | b[Q] | (c〈x〉↓ | b[y] � b[x | y]) → a[R] | b[P | Q]

Even though the effect is similar to that of the reduction (†), it is important to note here
that the transfer of process P from a to b is in fact mediated by the common environment
shared by a and b. The atomic transfer between two adjacent domains is thus a property
of their environment (which may or may not model a realistic network). In fact what is
problematic with the reduction (†) is the fact that it mandates the existence of a network
environment where atomic transitions between potentially spatially remote nodes are
possible, thus excluding e.g. wide area networks. In contrast, reduction (††) merely
specifies a particular network environment which happens not to be a wide area network.
With this approach, one can model different forms of computational environments, which
may or may not correspond to wide area networks, but one is neither forced to consider
atomic actions that need to occur across wide-area networks, nor forced to only use
purely asynchronous communications in all localities.

The principle of local actions is motivated by the inherent limitations and costs in-
volved in achieving atomic communication in an asynchronous network environment.
Strictly speaking, an atomic communication primitive (communication takes place in
full, and senders and recipients are aware of it, or not all) would entail common knowl-
edge (consensus), between senders and recipients, of the outcome of a successful com-
munication, a situation which is known impossible to achieve in a purely asynchronous
network with failures [24]. Probabilistic protocols can be used to get arbitrarily close
(in probability) to the ideal situation, but they are much more costly to implement than
the simple sending of a message, and they rely on assumptions about the knowledge of
each site on fault occurrences in a given configuration which are not necessarily valid
in a wide-area network. In a foundational calculus for distribution, adopting atomic re-
mote communication primitives would mean that a simple information exchange would
have to bear the cost of the implied atomicity. This is clearly not acceptable, for there
are useful programs that can be built relying on communication primitives with weak
guarantees. For instance, an application that monitors periodically a large number of
sensors distributed throughout a wide-area network can make use directly of a protocol
with weak guarantees such as the UDP Internet protocol. Relying on atomic commu-
nication primitives for these applications would result in higher performance costs for
no added benefit. Besides, since in a wide-area network with purely asynchronous be-
havior, failure cannot be distinguished from arbitrary long delays in communication, a
practical program would encapsulate an atomic remote communication primitive in a
timer watchdog, raising an exception if the communication takes too long to complete.
In effect, this encapsulation exposes the more complex transactional behavior of com-
munication, which comprises, from the point of view of the sender, two local actions: an
initial local action (initiating the communication), and a terminal local action (aborting
the communication, in case of communication failure or excessive delay, or reporting
success).

Interestingly, the principle of local actions is not valid in Ambient calculi. Even the
Boxed Ambient variants, which have been inspired by the Seal calculus (which does

152 A. Schmitt and J.-B. Stefani

enforce the principle of local actions), still contain at least one atomic communication
primitive: the in primitive. Of course, in Boxed Ambient calculi, one has also the first-
order communication primitives of the Seal calculus at his disposal. Still, the atomic
semantics of the in primitive is not satisfactory. As mentioned above, a more useful
semantics for this primitive would turn it into a transaction, with at least two possible
outcomes (success or failure), thus allowing the initiator of the communication to take
into account the potential occurrence of failures.

Higher-Order Communication. Higher-order communication is an important feature of
a distributed programming model for it allows to model distributed software updates, the
introduction of new components in a system, and in general dynamic reconfiguration.
As can be seen in the discussion of the different actions of the Kell calculus above, the
Kell calculus supports higher-order communication.

In the first two categories of distributed process calculi we mentioned in the intro-
duction (variants of the π-calculus with mobility primitives, Ambient calculi), dynamic
reconfiguration is possible through mobility primitives, however we find that the mod-
elling of dynamic reconfiguration behavior in these models can become a bit contrived.

Consider for instance the following creation of a new configuration in the Kell cal-
culus:

a〈P, Q, R〉 | (a〈x, y, z〉 � b[x | c[y | e[z]]]) → b[P | c[Q | e[R]]]

One can have an analogous creation of a new configuration in an Ambient calculus
via a construction of the form

〈ε〉 | Mb | Mc | Me | (x).b[open b | c[open c | e[open e]]] →∗ b[P | c[Q | e[R]]]

where Mb
Δ= b[in b.P], Mc

Δ= c[in b.in c.Q], Me
Δ= e[in b.in c.in e.Q]. Notice, how-

ever, that this is not entirely sufficient to capture the atomic creation given in the Kell
calculus above, for one needs to make sure that no parasitic move involves the b, c and
e ambients once they are released after the initial communication. This leads to quite
an involved protocol to perform the simple creation above. Another problem with such
distributed calculi, except for the Seal calculus, is the absence of a replication facility.
Thus, the following atomic action in the Kell calculus

a〈P 〉 | (a〈x〉 � b[x] | c[x | d[x]]) → b[P] | c[P | d[P]]

can only be obtained in an Ambient calculus with a protocol involving an a priori repli-
cation of P somewhere in the forest of ambients, and then routing the obtained copies
to their proper destinations, e.g.

!(x).x.P | 〈in b〉 | 〈in c〉 | 〈in c.in d〉 | (b[] | c[d[]]) →∗ b[P] | c[P | d[P]]

Again, ensuring the proper atomicity of the creation would involve additional subtlety
for what is a fairly simple atomic creation in the Kell calculus.

In the Seal calculus, the presence of the migrate and replicate primitive simplifies
the matter a bit, but the result is still fairly contrived compared to the simple reduction
in the Kell calculus:

a∗
1(e1).a∗

2(e2).ac
3(e3) | e1[P] | e2[P | a↑

3(d)] | a∗
1(b).a

∗
2(c).e3[P] →∗ b[P] | c[P | d[P]]

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 153

As with Ambients, the above Seal configuration would need to be more sophisticated
to account for the atomic character of the original Kell calculus reduction.

The added complexity, in non-higher-order calculi, in expressing simple operations
such as those above could be justified if this resulted in a simpler semantical theory.
However, this is not the case: bisimulation equivalences defined for Ambient calculi and
for the Seal calculus so far are definitely higher-order. For the Seal calculus we do not
even have at this stage a sound and complete characterization of contextual equivalence.
The higher-order bisimulation we develop in Section 4.2 for the Kell calculus is in fact no
more complex than analogous bisimulations for Ambient calculi and the Seal calculus.
In addition, it yields a sound and complete characterization of contextual equivalence
(for a certain class of pattern languages). In our view, this removes a large part of the
prevention against higher-order languages on the ground of the complexity of their
bisimulation theory.

Finally, even though the Kell calculus has no primitive for recursion or replication, it
is possible to define receptive triggers, i.e. triggers that are preserved during a reduction
(much like definitions in the Join calculus) using its higher-order character. Let t be a
name that does not occur free in ξ or P . We define ξ �P as follows:

ξ �P
Δ= νt.Y (P, ξ, t) | t〈Y (P, ξ, t)〉

Y (P, ξ, t) Δ= ξ | t〈y〉 � P | y | t〈y〉

It is easy to see with the rules of reduction given in Section 3 that if M | (ξ �P) →
M ′ | Pθ, where θ is a substitution, then we have M | (ξ �P) → M ′ | (ξ �P) | Pθ.
The construction ξ �P is reminiscent of the CHOCS fixed point operator defined in [36]
and of Vasconcelos’ fixed point operator in higher-order π [37].

Programmable Membranes. This principle refers to the ability to design kells with
varying semantics, in order to reflect the different kinds of containment structures (“do-
mains”) that may arise in a distributed system (e.g. failure, security, or communication
domains). Especially important for security is the ability to design different forms of
control to gain access to the internals of a kell (firewalls), or, conversely, to restrict ac-
cess from the internals of a kell to services provided by its environment (sandboxes and
wrappers). The principle thus implies the ability to define arbitrary interface protocols
to govern the communication between a locality and its environment, and the ability
to control communications to and from the contents of a locality, much as is provided
by the Seal calculus and calculi inspired by it such as Boxed Ambients and Boxed-π.
The examples below show that the Kell calculus supports programmable membranes
in the above sense. In contrast to Boxed-π and Boxed Ambients, the Kell calculus pro-
vides the ability to control the internals of a given kell by means of passivation actions.
Such actions generalize the “migrate and replicate” constructs of the Seal calculus,
while providing a way to recover the expressive power of the passivate operator of the
M-calculus.

With the different forms of actions in the Kell calculus, one can program different
forms of membranes. Here are some examples:

154 A. Schmitt and J.-B. Stefani

Perfect Firewall: Let P be an arbitrary process. The process νe.e[b[P]] can only have
internal transitions. The context νe.e[b[·]] is a perfect firewall.We shall prove in Section 4
that this is indeed so.

Transparent Membrane: Assume that all messages to process P located in a take
the form rcv〈a, Q〉, that all messages sent by P to its environment take the form
snd〈c, Q〉, and that there is an environment process Env

Δ= snd〈(a), x〉↓ � rcv〈a, x〉
(this environment allows two processes located in different places to communicate, as
in a[P] | b[Q] | Envt). Then, the process νe.e[Mt | a[P]], where

Mt
Δ= (rcv〈a, x〉↑ � rcv〈a, x〉) | (snd〈(a), x〉↓ � snd〈a, x〉)

behaves exactly like a[P] from the point of view of communications. Note that in the
process definition above we use a receipt pattern snd〈(a), x〉↓ that makes use of a name
variable (a), and of a process variable x, as well as a receipt pattern rcv〈a, x〉↑ that
makes use of a name matching pattern a and of a process variable x. Pattern languages
that support these constructs are defined in Section 5.

Intercepting Membrane: Under the same assumption as for the transparent membrane,
the process νe.e[Mi | a[P]], where

Mi
Δ= (rcv〈a, x〉↑ �FR(a, x)) | (snd〈(a), x〉↓ �FS(a, x))

defines a membrane around kell a[P] that triggers behavior FR(a, x) upon receipt of a
message rcv〈a, Q〉, and behavior FS(c, x) when P sends a message snd〈c, Q〉.
Migration Membrane: Under the same assumption as for the transparent membrane,
the process νe.e[Mm | a[P]], where

Mm
Δ= Mt | (rcv〈a, enter〈x〉〉↑ | a[y] � a[y | x])

| (go〈(b)〉↓ | a[y] � snd〈b, enter〈a[y]〉〉)

defines a membrane around kell a[P] that allows it to move to a different kell via the go
operation. Compare these operations with the migration primitives of Mobile Ambients,
and the go primitive of Dπ or of the Distributed Join calculus.

Fail-Stop Membrane: Under the same assumption as for the transparent membrane,
the process νe.e[Mf | a[P]], where

Mf
Δ= Mt | (rcv〈a, stop〉↑ | a[y] �S)

| (rcv〈a, ping〈(r)〉〉↑ | a[y] � snd〈r, up〉 | a[y])

S
Δ= rcv〈a, ping〈(r)〉〉↑ � snd〈r, down〉

defines a membrane around kell a[P] that allows to stop its execution (simulating a
failure in a fail-stop model), and that implements a simple failure detector via the ping

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 155

operation. Compare these operations with the π1l-calculus [2] or the Distributed Join
calculus models of failures.

Fail-Stop Membrane with Recovery: Under the same assumption as for the transparent
membrane, the process νe.e[Mr | a[P]], where

Mr
Δ= Mt | (rcv〈a, stop〉↑ | a[y] � b〈y〉 | T)

| (rcv〈a, ping〈(r)〉〉↑ | a[y] � a[y] | snd〈r, up〉)
T

Δ= (rcv〈a, ping〈(r)〉〉↑ | b〈y〉 � b〈y〉 | snd〈r, down〉)
| (rcv〈a, recover〉↑ | b〈y〉 � a[y])

defines a membrane around kell a[P] that models fail-stop failures with the possibility
of recovery.

Dynamic Binding. In a distributed programming model, it is important to provide both
local and remote equivalent of libraries or services, because of the cost, safety, and
security considerations that may apply. Thus, it should be possible to access identically
named libraries or services (like a print service) at different sites. Dynamic binding
refers to this possibility of binding names of resources (functions, libraries, services)
to different entities, depending on the locations of processes accessing resources. It
is interesting to note that not all distributed process calculi support dynamic binding.
The Distributed Join calculus, for instance, does not support it since each definition is
uniquely defined: every resource is permanently bound to a single locality. In the Kell
calculus, just as with Ambient calculi and the Seal calculus, dynamic binding support is
a consequence of the local semantics of communication. Thus, we have the following
reductions, which illustrate that the outcome of an invocation of function fun depends
on the location of P

Δ= fun〈Q〉:

a[(fun〈x〉 �Fa(x)) | P] | b[(fun〈x〉 �Fb(x)) | P] →∗

a[(fun〈x〉 �Fa(x)) | Fa(Q)] | b[(fun〈x〉 �Fb(x)) | Fb(Q)]

3 The Kell Calculus: Syntax and Operational Semantics

3.1 Syntax

The syntax of the Kell calculus is given in Figure 1. It is parameterized by the pattern
language used to define patterns ξ in triggers ξ �P .

Names and Variables. We assume an infinite set N of names, and an infinite set V of
process variables. We assume that N ∩ V = ∅. We let a, b, n, m and their decorated
variants range over N; and p, q, x, y range over V. The set L of identifiers is defined as
L = N ∪ V.

Processes. Terms in the Kell calculus grammar are called processes. We note KL the set
of Kell calculus processes with patterns in pattern language L. In most cases the pattern
language used is obvious from the context, and we simply write K. We let P , Q, R, S, T

156 A. Schmitt and J.-B. Stefani

P ::= 0 | x | ξ � P | νa.P | a〈P 〉.P | P | P | a [P] .P

a ∈ N, x ∈ V

Fig. 1. Syntax of the Kell Calculus

and their decorated variants range over processes. We call message a process of the form
a〈P 〉.Q. We let M,N and their decorated variants range over messages and parallel
composition of messages. We call kell a process of the form a [P] .Q. The name a in a
kell a [P] .Q is called the name of the kell. In a kell of the form a [. . . | aj [Pj] | . . .] we
call subkells the processes aj [Pj].

Abbreviations and Conventions. We abbreviate a〈P 〉 a message of the form a〈P 〉.0. We
abbreviate a a message of the form a〈0〉. We abbreviate a [P] a kell of the form a [P] .0.
In a term νa.P , the scope extends as far to the right as possible. In a term ξ �P , the
scope of � extends as far to the left and to the right as possible. Thus, a〈c〉 | b [y] �P |
Q stands for (a〈c〉 | b [y]) �(P | Q). We use standard abbreviations from the the π-
calculus: νa1 . . . aq.P for νa1. . . . νaq.P , or νã.P if ã = (a1 . . . aq). By convention,
if the name vector ã is null, then νã.P

Δ= P . Also, we abuse notation and note ã the
set {a1, . . . , an}, where ã is the vector a1 . . . an. We note

∏
j∈J Pj , J = {1, . . . , n}

the parallel composition (P1 | (. . . (Pn−1 | Pn) . . .)). By convention, if J = ∅, then∏
j∈J Pj

Δ= 0.
For the definition of the operational semantics of the calculus, we use additional

terms called annotated messages. Annotated messages comprise:

– Local Messages: a local message is a term of the form a〈P 〉. We write Mm for a
multiset of local messages.

– Up Messages: an up message is a term of the form a〈P 〉↑b . We write Mu for a
multiset of up messages.

– Down Messages: a down message is a term of the form a〈P 〉↓b . We write Md for a
multiset of down messages.

– Kell Messages: a kell message is a term of the form a [P]. We write Mk for a multiset
of kell messages.

We write M for a multiset of annotated messages. Some of these terms are not
processes, namely those in Mu and Md; they are only used for matching purposes. We
often write these multisets as parallel compositions of annotated messages.

Let Mm be a multiset of local messages.We write M↑b
m for the multiset of up messages

{m↑b | m ∈ Mm}, and M↓b
m for the multiset of down messages {m↓b | m ∈ Mm}.

Let M = {mnj

j | j ∈ J} be an arbitrary multiset (where the multiplicity of element
mj is nj). We note M.supp = {mj | j ∈ J} the support set of M , i.e. the smallest set
to which elements of M belong.

Contexts. A Kell calculus context is a term C built according to the grammar given in
Figure 2. Filling the hole in C with a Kell calculus term Q results in a Kell calculus term
noted C{Q}. We note C the set of Kell calculus contexts. We let C and its decorated
variants range over C. We also make use of a specific form of contexts, called execution
contexts (noted E), which are used to specify the operational semantics of the calculus.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 157

C ::= · | ξ �C | νa.C | (P | C) | a [C] .P

| a〈C〉.P | a〈P 〉.C | a [P] .C

E ::= · | νa.E | a [E] .P | P | E

Fig. 2. Syntax of Contexts

Substitutions. We call substitution a (partial) function θ : (N → N) (V → K) from
names to names and process variables to Kell calculus processes. We write Pθ the image
under the substitution θ of process P . We note Θ the set of substitutions.

If f : E → F is a partial function, we note f(x) ↓ to indicate that f is defined at
x ∈ E . We note f(x) ↑ for ¬(f(x) ↓). We note f.dom = {x ∈ E | f(x) ↓} the domain
of function f and f.ran = {y ∈ F | ∃x ∈ E , f(x) = y} the range of function f .

We note ⊥ the substitution that is defined nowhere, i.e. such that ⊥.dom = ∅.
The substitution θ ⊕ θ′ is defined iff

– both θ and θ′ are defined, i.e. if θ and θ′ are both different from ⊥;
– let domn(θ) = θ.dom ∩ N be the domain of the substitution θ restricted to names;

for all n ∈ domn(θ) ∩ domn(θ′), we have θ(n) = θ′(n) (that is: if the name n is in
the domain of both substitutions, it is mapped to the same name: one may test for
name equality);

– let domP(θ) = θ.dom ∩ V be the domain of the substitution θ restricted to process
variables; then domP(θ) ∩ domP(θ′) = ∅ (one may not test for process equality).

If defined, θ ⊕ θ′ is the union of θ and θ′. We extend this operation to sets of
substitutions:

S1 ⊕ S2
Δ= {θ1 ⊕ θ2 | θ1 ∈ S1, θ2 ∈ S2, θ1 ⊕ θ2 defined}

Patterns. A pattern ξ is an element of a pattern language L. A pattern ξ acts as a binder
in the calculus. A pattern can bind name variables, of the form (a), where a ∈ N, and
process variables. All name and process variables appearing in a pattern ξ are bound by
the pattern. Name variables can only match names. Process variables can only match
processes. Patterns are supposed to be linear with respect to process variables, that is,
each process variable x occurs only once in a given pattern ξ.

We make the following assumptions on a pattern language L:

– A pattern language L is a set of patterns that are multisets of single patterns ξm, ξd,
ξu, and ξk. The language L can be described by a grammar, with the multiset union
being represented by parallel composition.
• ξm is taken from the set Ξm and is a local message pattern: it is used to match

local messages;
• ξd is taken from the set Ξd and is a down message pattern: it is used to match

messages from immediate subkells;
• ξu is taken from the set Ξu and is a up message pattern: it is used to match

messages from the environment of the enclosing kell;
• ξk is taken from the set Ξk and is a kell message pattern: it is used to match

immediate subkells.

158 A. Schmitt and J.-B. Stefani

fn(0) = ∅ fv(0) = ∅
fn(a) = {a} fv(a) = ∅
fn(x) = ∅ fv(x) = {x}
fn(νa.P) = fn(P) \ {a} fv(νa.P) = fv(P)
fn(a [Q] .P) = fn(a, Q, P) fv(a [Q] .P) = fv(Q, P)
fn(a〈P 〉.Q) = fn(a, P, Q) fv(a〈P 〉.Q) = fv(P, Q)
fn(P | Q) = fn(P, Q) fv(P | Q) = fv(P, Q)
fn(ξ � P) = fn(ξ) ∪ (fn(P) \ bn(ξ)) fv(ξ � P) = fv(P) \ bv(ξ)

Fig. 3. Free names and free variables

– One can decide whether a pattern matches a given term. More precisely, each pat-
tern language is equipped with a decidable relation match, which associates a pair
〈ξ, M〉, consisting of a pattern ξ and a multiset of annotated messages M , with de-
fined substitutions that make the pattern match the multiset of annotated messages, if
there are such substitutions, and with ∅ otherwise (see section 3.2 for more details).
We write θ ∈ match(ξ, M) for 〈〈ξ, M〉, θ〉 ∈ match.

– Pattern languages are equipped with three functions fn, bn, and bv, that map a
pattern ξ to its set of free names, bound name variables, and bound process vari-
ables, respectively. Note that patterns may have free names, but cannot have free
process variables (i.e. all process variables appearing in a pattern are bound in the
pattern).

– Pattern languages are equipped with a function sk, which maps a pattern ξ to a
multiset of names. Intuitively, ξ.sk corresponds to the multiset of channel names
on which pattern ξ expects messages or kells (we use indifferently an infix or
a postfix notation for sk). We identify ξ.sk = {ai | i ∈ I} with the action∏

i∈I ai (see section 3.3 for more details). By definition, we set ξ.sk.supp ⊆ fn(ξ).
In other terms, a pattern may not bind a name that appears in its set of chan-
nel names (a trigger must know channel names in order to receive messages on
them).

– Pattern languages are equipped with a structural congruence relation between pat-
terns, noted ≡. We assume the following properties: if ξ ≡ ζ, then fn(ξ) = fn(ζ),
ξ.sk = ζ.sk, and bn(ξ) ∪ bv(ξ) = bn(ζ) ∪ bv(ζ). Moreover, the interpretation
of join patterns as multisets of simple patterns implies that the structural congru-
ence on patterns must include the associativity and commutativity of the parallel
composition operator.

– A pattern language is compatible with the structural congruence defined below (see
section 3.2 for more details), in particular if P ≡ Q then there is no Kell calculus
context that can distinguish between P and Q.

Free Names and Free Variables. The other binder in the calculus is the ν operator, which
corresponds to the restriction operator of the π-calculus. Notions of free names (fn) and
free variables (fv) are classical and are defined in Figure 3. We note fn(P1, . . . , Pn)
to mean fn(P1) ∪ . . . ∪ fn(Pn), and likewise for other functions operating on free or
bound identifiers. We note P =α Q when two terms P and Q are α-convertible.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 159

2size

(P | Q) | R ≡ P | (Q | R) [S.Par.A] P | Q ≡ Q | P [S.Par.C]

P | 0 ≡ P [S.Par.N] νc.0 ≡ 0 [S.Nu.Nil] νa.νb.P ≡ νb.νa.P [S.Nu.C]

a �∈ fn(Q)
(νa.P) | Q ≡ νa.P | Q

[S.Nu.Par]
a �∈ fn(b, Q)

b[νa.P].Q ≡ νa.b[P].Q
[S.Nu.Kell]

ξ ≡ ζ

ξ � P ≡ ζ � P
[S.Trig]

P =α Q

P ≡ Q
[S.α]

P ≡ Q

C{P} ≡ C{Q} [S.Context]

Fig. 4. Structural congruence

3.2 Reduction Semantics

We define in this section a reduction semantics for Kell calculus processes. As usual, we
use a structural congruence relation, and a reduction step relation.

Structural Congruence. The structural congruence≡ is the smallest equivalence relation
that verifies the rules in Figure 4. The rules S.Par.A, S.Par.C, S.Par.N state that the
parallel operator | is associative, commutative, and has 0 as a neutral element. Note that,
in rule S.Trig, we rely on the structural congruence relation on patterns, also noted ≡.
Note also that we do allow the Ambient-like rule S.Nu.Kell.

The compatibility of the relation match with the structural congruence is formally
defined as follows.

Definition 1. Two substitutions θ, θ′ are said to be equivalent (noted θ ≡ θ′), if θ.dom =
θ′.dom, and, for all a, x ∈ θ.dom, aθ = aθ′, and xθ ≡ xθ′.

Definition 2. A pattern language L is said to be compatible with the structural congru-
ence ≡ if, for all ξ, ζ ∈ L, and all multisets of annotated messages M, M ′, whenever
ξ ≡ ζ, M ≡ M ′, if θ ∈ match(ξ, M), then there exists θ′ ∈ match(ξ, M ′) such that
θ ≡ θ′.

Sub-reduction. We define a sub-reduction relation �: K → K mapping processes to
processes. We note �∗ the reflexive and transitive closure of the sub-reduction relation.

The sub-reduction relation is defined to handle scope extrusion of restriction out of
kell boundaries. Some explanation is in order. In presence of running process replication,
if one is not careful, the use of the structural congruence rule S.Nu.Kell could give
rise to behaviour which would violate the idea that structurally equivalent processes
should behave similarly in the same evaluation context. The example below provides an
illustration:

(a[x] �x | x) | a[νb.P] → (νb.P) | (νb.P)
(a[x] �x | x) | νb.a[P] → νb.P | P

A similar phenomenon arises with the Seal calculus. In the Seal calculus and in earlier
versions of the Kell calculus [35], the issue is handled by suppressing rule S.Nu.Kell

160 A. Schmitt and J.-B. Stefani

from the structural congruence rules and by handling scope extrusion out of localities
during reduction steps (what can be called “dynamic scope extrusion”), only when it is
necessary (i.e. when a communication across a locality boundary needs to take place).
We have found that dynamic scope extrusion gave rise to undue complexities in a virtual
machine implementation of the calculus.

In [10], authors of the Seal calculus argue in favor of a specific form of dynamic
scope extrusion: the movement of processes outside a given locality can only take place
if all of their bound names have seen their scope extruded out of the enclosing locality
during a prior communication. In other terms, not only does scope extrusion out of
a locality only takes place during first-order communication (as in the previous case
of dynamic scope extrusion), but the movement of processes out of a given locality
only takes place if all of their bound names have been previously thus extruded. The
argument behind this form of dynamic scope extrusion is that of security: names restricted
inside a given locality (e.g. a name such as a in b[νa.P]) should be interpreted as local
channels, which should only become visible outside their enclosing locality by explicit
communication. Thus, a process which has non-extruded local channels is prevented
from moving, so as to not unduly expose these local channels. This argument, however,
is a bit moot. First, nothing prevents the unwary programmer from inadvertently turning
a local channel into a global one by communicating it outside of the enclosing locality.
If the distinction between local channels and global channels is important, we would
expect some additional means, such as a type system, to enforce it. Second, note that in
a form of dynamic scope extrusion where scope is systematically extended outside of a
locality prior to the move of a process out of that locality, restricted names still remain
private in absence of communication to other processes. A security issue therefore only
arises when restricted names are communicated to the wrong recipient (e.g. one with the
wrong security credentials), and the form of dynamic scope extrusion proposed in [10]
does not prevent it from occurring.

In this paper, we therefore adopt the following simpler approach: Ambient-like scope
extrusion is allowed in the structural congruence, but only processes in normal form can
reduce. A process is in normal form if all restrictions under evaluation context have been
pushed to the top-level. More formally, P is in normal form iff there is no P ′ such that
P � P ′. In our example above, a[νb.P] is not in normal form, since one can apply rule
rule SR.Kell to it, and thus (a[x] �x | x) | a[νb.P] can reduce only after sub-reduction:

(a[x] �x | x) | a[νb.P] �∗ νb.(a[x] �x | x) | a[P] → νb.P | P

The sub-reduction relation is defined as the smallest relation satisfying the rules in
Figure 5. One can note that �∗ ⊆ ≡, i.e. that for all P, Q, P �∗ Q implies that P ≡ Q.

Reduction. The reduction relation → is defined as the smallest binary relation on K2

that satisfies the rules given in Figure 7. We define the predicates Δ, Υ , Ψ in Figure 6.
Predicate Δ (resp. Υ , Ψ) can be read as a function that, given a set U of local

messages (resp. of kells, of messages in sub-kells), extracts a multiset Mm (resp. Mk,
Md) of local messages (resp. of kell messages, of down messages) to match, and a
residual V . Residuals are continuation processes that appear after a reduction step. Note
the condition U2 �� in rules R.Red.L and R.Red.G: it prevents a reduction to take place

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 161

a �∈ fn(b, Q)
b[νa.P].Q � νa.b[P].Q

[SR.Kell]
a �∈ fn(P)
νa.P � P

[SR.GC]

a �∈ fn(Q)
(νa.P) | Q � νa.P | Q

[SR.Par.L]
a �∈ fn(Q)

Q | (νa.P) � νa.Q | P
[SR.Par.R]

P =α P ′ P ′
� Q

P � Q
[SR.α]

P � Q

E{P} � E{Q} [SR.Ctx]

Fig. 5. Sub-reduction relation

Δ(U, Mm, V) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U =
∏
j∈J

aj〈Pj〉.Qj

Mm =
∏
j∈J

aj〈Pj〉

V =
∏
j∈J

Qj

Υ (U, Mk, V) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

U =
∏
j∈J

aj [Pj] .Qj

Mk =
∏
j∈J

aj [Pj]

V =
∏
j∈J

Qj

Ψ(U, Md, V) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U =
∏
j∈J

aj

⎡⎣Rj |
∏
i∈Ij

ai〈Pj〉.Si

⎤⎦ .Qj

Md =
∏
j∈J

∏
i∈Ij

ai〈Pi〉↓aj

V =
∏
j∈J

aj

⎡⎣Rj |
∏
i∈Ij

Si

⎤⎦ .Qj

Fig. 6. Reduction predicates

with kell messages in non-normal form; this takes care of the issue of dynamic scope
extrusion discussed earlier.

The reduction relation depends on a matching relation, match, which associates pairs
consisting of a multiset of patterns drawn from L and a multiset of annotated messages
M with substitutions (from names to names and from process variables to processes).
This matching relation is assumed to be defined in terms of four functions, matchm,
matchd,matchu, andmatchk, that define how a single pattern matches a single annotated
message. Each of these functions takes a single pattern ξr and an annotated message
M , an returns a defined substitution θ is the annotated message matches the pattern, and
the undefined substitution ⊥ otherwise. Noting ξr a single pattern and Σ(J) the set of
permutations on finite set J , we have:

162 A. Schmitt and J.-B. Stefani

ξ �= ∅ θ ∈ match(ξ, Mm | Md | Mk)
Δ(U1, Mm, V1) Υ (U2, Mk, V2) Ψ(U3, Md, V3) U2 ��

(ξ � P) | U1 | U2 | U3 → Pθ | V1 | V2 | V3
[R.Red.L]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
[R.Eqv]

P → Q

E{P} → E{Q} [R.Ctx]

ξ �= ∅ θ ∈ match(ξ, Mm | Md | Mk | M↑b) Δ(U1, Mm, V1)
Υ (U2, Mk, V2) Ψ(U3, Md, V3) Δ(U4, M, V4) U2 ��

b[(ξ � P) | U1 | U2 | U3 | R].T | U4 → b[Pθ | V1 | V2 | V3 | R].T | V4
[R.Red.G]

Fig. 7. Reduction Relation

match(
∏
j∈J

ξr
j ,
∏
j∈J

Mj) =
⋃

σ∈Σ(J)

⎛⎝⊕
j∈J

match(ξr
j , Mσ(j))

⎞⎠
match(ξm, a〈P 〉) = matchm(ξm, a〈P 〉)

match(ξd, a〈P 〉↓b) = matchd(ξd, a〈P 〉↓b)

match(ξu, a〈P 〉↑b) = matchu(ξu, a〈P 〉↑b)
match(ξk, a [P]) = matchk(ξk, a [P])

Example 1. To illustrate these definitions, we introduce a first instance of the Kell cal-
culus with a simple pattern language. We call this calculus jK. The patterns in jK are
defined by the following grammar:

ξ ::= J | ξk | J | ξk J ::= ξm | ξd | ξu | J | J
ξm ::= a〈x〉 ξu ::= a〈x〉↑ ξd ::= a〈x〉↓ ξk ::= a [x]

The matching functions for jK patterns are defined inductively as follows:

matchm(a〈x〉, a〈P 〉) Δ= {P/x} matchd(a〈x〉↓, a〈P 〉↓b) Δ= {P/x}
matchu(a〈x〉↑, a〈P 〉↑b) Δ= {P/x} matchk(a [x] , a [P]) Δ= {P/x}

Note that, apart from the use of join patterns (i.e. the possibility to receive multiple
messages at once), the pattern language of jK is extremely simple and does not allow for
name-passing.

The sk function for jK patterns is defined as follows:

(a [x]).sk = (a〈x〉).sk = a〈x〉↓ = a〈x〉↑ = a

(ξ1 | ξ2).sk = ξ1.sk | ξ2.sk

Example 2. The reduction rules R.Red.L and R.Red.G appear formidable, but only
because they allow arbitrary combination of local, up, down and kell messages to be

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 163

received by a trigger. Using simple jK patterns, on can see immediately that the following
rules are derived reduction rules in jK:

(a〈x〉 �P) | a〈Q〉.S → P{Q/x} | S [Local]

(a〈x〉↓ �P) | b[a〈Q〉.S | R].T → P{Q/x} | b[S | R].T [Out]

b[(a〈x〉↑ �P) | R].T | a〈Q〉.S → b[P{Q/x} | R].T | S [In]

(a [x] �P) | a [Q] .S → P{Q/x} | S [Kell]

One can notice that the rules Local, Out, In, and Kell correspond to the four kinds
of actions discussed in Section 2.

3.3 Labelled Transition System Semantics

We define in this section a labelled transition system for Kell calculus processes. The
labelled transition system is defined by means of the same sub-reduction relation as for
the reduction semantics, and of a commitment relation in the style of the commitment
rules for the π-calculus defined in [27].

Abstractions and Concretions. We define the reduction relation using an extension of
Milner’s concretions and abstractions [27]. Extensions are required to the original notions
because of two features, which are peculiar to the Kell calculus input patterns:

1. The possibility for patterns to involve the simultaneous receipt of multiple messages
(as for Join patterns), as illustrated with jK. This is the reason for the presence of
the name a in an abstraction (a〈x〉)P .

2. The possibility for patterns to rely on contextual information (enabling, for instance,
to capture the origin of messages, as indicated by the ↑ and ↓ arrows in jK patterns).

We first define concretions. A concretion C, D consists of a multiset of annotated
messages (which are emitted), and a process that represents the rest of the computation.
Their syntax is given by the grammar in Figure 8, where P is as in Figure 1. The Ω
production of the grammar in Figure 8 yields (possibly empty) multisets of annotated
messages, which do not contain any up message as labelled transitions do not create
them. Up messages are dealt with in the definition of the pseudo-application operator
below.

C ::= νã.Ω ‖ P

Ω ::= ∅ | a〈P 〉 | a〈P 〉↓b | a [P] | Ω | Ω

Fig. 8. Syntax of Concretions

We then define abstractions. An abstraction F is given by the grammar in Figure
9, where ξ, P are as in Figure 1, and C is a concretion. We call simple abstraction an
abstraction given by the G production in Figure 9.

164 A. Schmitt and J.-B. Stefani

F ::= G | a[G].P | F@C | νã.F

G ::= (ξ)P | G@C

Fig. 9. Syntax of Abstractions

Actions. Actions are given by the grammar in Figure 10, where a ∈ N, ε and τ are
two distinct symbols that do not belong to N. Classically, τ represents the silent action.
Action ε is introduced merely for technical purposes, to signal the complete match of
messages with an input pattern in a trigger. We denote Λ the set of actions, and we let
α,β and their decorated variant range over Λ. By definition, the parallel operator | on
actions is associative and commutative, and has ε as a neutral element. Furthermore,
we set a | a = ε. The set of free names of an action α is defined inductively by:
fn(ε) = fn(τ) = ∅, fn(a) = {a}, fn(α | β) = fn(α,β). Abusing the notation, we
identify when necessary an action α with the set of names that occur in α. Thus, action
α = a | b | b | c is identified with the set {a, b, c}.

α ::= ε | τ | a | a | α | α

Fig. 10. Syntax of Actions

Agents. An agent A is a Kell calculus process P , a concretion C or an abstraction F .
We note A the set of agents. We let A, B and their decorated variants range over agents;
F and its decorated variants range over abstractions; G and its decorated variants range
over simple abstractions; C, D and their decorated variants range over concretions.

The notions of free names, free variables, bound names and bound variables extend
immediately to agents, noting that fn(a〈P 〉↓b) = fn(a, b, P), fv(a〈P 〉↓b) = fv(P),
fn(Ω ‖ P) = fn(Ω, P), fv(Ω ‖ P) = fv(Ω, P), fn(F@C) = fn(F, C) if F@C ↓,
and fv(F@C = fv(F, C) if F@C ↓ (see below the definition of the pseudo-application
operator @).

Parallel Composition of Agents. We define the effect of parallel composition on agents,
|: A× A → A, as follows, where C = νã.Ω ‖ P and C ′ = νc̃.Ω′ ‖ P ′:

F | Q Δ= F@(∅ ‖ Q)

C | Q Δ= νã.Ω ‖ (P | Q) if ã ∩ fn(Q) = ∅
C | C ′ Δ= νã.νc̃.(Ω | Ω′) ‖ (P | P ′) if ã ∩ fn(Ω′, P ′) = c̃ ∩ fn(Ω, P) = ∅

For all annotated multisets of messages Ω, we set by definition Ω | ∅ = ∅ | Ω = Ω.

Pseudo-Application. We define the pseudo-application relation, @, which in turns relies
on the match relation. The relation @ gives the possible results of a successful reduction
of an application. As a relation @ : A × A × A, operation @ is partial and it is defined
(written ↓) only when the last element B in a triple 〈A1, A2, B〉 ∈ @ is a process. It is

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 165

defined as follows (and undefined in all other cases), where we note A1@A2 = B for
〈A1, A2, B〉 ∈ @:

(F@C)@C ′ Δ= F@(C | C ′)

(ξ)R@(Ω ‖ P) Δ= Rθ | P if θ ∈ match(ξ,Ω)

(a[(ξ)R@(Ω ‖ P)].T)@(Mm ‖ Q) Δ= a[Rθ | P].T | Q if θ ∈ match(ξ,Ω | M↑a
m)

(νã.F)@(νb̃.C) Δ= νã.νb̃.F@C if ã ∩ fn(C) = b̃ ∩ fn(F) = ∅

Note that in the third clause of the above definition, we can have Ω = ∅, which
accounts for the possibility of triggers only receiving up messages. In this case the
above clause reduces to:

(a[(ξ)R@(∅ ‖ P)].T)@(Mm ‖ Q) Δ= a[Rθ | P].T | Q if match(ξ, M↑a
m) % θ

We write F@C ↓ to indicate that the partial relation @ : A×A×K is defined on the
pair 〈F, C〉 (i.e. that there exists P ∈ K such that F@C = P), and F@C ↑ to indicate
that it is not.

Commitment Relation. The commitment relation is the smallest relationR ⊆ K×Λ×A,
that satisfies the rules in Figure 11.

A few comments are in order. First, one can note that actions in the commitment
relation provide relatively few information on the nature of the operation they signal.

For instance, a〈P 〉.Q, a[P].Q, b[a〈P 〉.Q | R].S all give rise to a transition a−→ .
This is not a problem, however, for the concretions they give rise to, namely a〈P 〉 ‖ Q,
a[P] ‖ Q, a〈P 〉↓a ‖ a[Q | R].S, a priori match different patterns. For instance, in
jK, the patterns a〈x〉, a[x], and a〈x〉↓ can distinguish between these different concre-
tions. Second, communication involving multiple messages is dealt with by assembling
abstractions and concretions in a piece-wise manner, until a match is found, which is

signalled by a transition of the form P ε−→ Q: action ε signals that all communication
channels have been matched, and the presence of Q as the result of the transition signals
that the match has been successful. Rule T.Red can then be used to effect the result-
ing silent transition. Third, note the presence of the conditions a[P].Q ��, a[P].R ��,
Q | P ��, and P | Q �� in rules T.Kell, T.Kell.P, T.Kell.C, T.Kell.F, T.Par.L,
T.Par.R, T.Par.FC, T.Par.CF, T.Par.CC. This means that these rules operate only on
processes in normal form. For processes which are not in normal form, rule T.SR must
first be applied. This takes care, in the labelled transition semantics, of the dynamic
scope extrusion issue discussed earlier. It also facilitates the proofs by induction, since
one can essentially reason on processes in normal form only. Fourth, note the condition
α �= ε in rules T.New, T.Par.L, T.Par.FC, T.Par.CF. Strictly speaking, this condition
is not necessary, but it does simplify the handling of the different cases in the proofs by

induction on the derivation of a transition P α−→ Q.
The correspondence between the reduction semantics and the labelled transition

semantics is given by the following theorem.

Theorem 1. For all P, Q, P τ−→ ≡ Q iff P → Q.

166 A. Schmitt and J.-B. Stefani

a〈P 〉.Q a−→ a〈P 〉 ‖ Q [T.Mess]

a[P].Q ��

a [P] .Q
a−→ a [P] ‖ Q

[T.Kell]

ξ � P
ξ.sk−−−−→ (ξ)P [T.Trig]

P
α−−→ A a �∈ fn(α) α �= ε

νa.P
α−−→ νa.A

[T.New]

P
τ−→ Q a[P].R ��

a [P] .R
τ−→ a [Q] .R

[T.Kell.P]
P

α−−→ Mm ‖ Q a[P].R ��

a [P] .R
α−−→ M↓a

m ‖ a [Q] .R

[T.Kell.C]

P
α−−→ G a[P].R ��

a [P] .R
α−−→ a [G] .R

[T.Kell.F]
P

α−−→ A α �= ε P | Q ��

P | Q
α−−→ A | Q

[T.Par.L]

P
α−−→ A α �= ε Q | P ��

Q | P
α−−→ A | Q

[T.Par.R]

P
α−−→ F Q

β−→ C α �= ε P | Q ��

P | Q
α | β−−−−→ F@C

[T.Par.FC]

P
α−−→ F Q

β−→ C α �= ε Q | P ��

Q | P
α | β−−−−→ F@C

[T.Par.CF]

P
α−−→ C Q

β−→ C′ P | Q ��

P | Q
α | β−−−−→ C | C′

[T.Par.CC]
P

ε−→ Q

P
τ−→ Q

[T.Red]

P �
∗ Q Q

α−−→ A

P
α−−→ A

[T.SR]
Q =α P P

α−−→ A A =α B

Q
α−−→ B

[T.α]

Fig. 11. Commitment Relation

Proof. (Sketch3) The proof is entirely classical. It relies on the following result, which
involves an extension of the structural congruence relation to agents: for all P, Q, when-

3 The full proofs of the results reported in this paper can be found in the research report of the
same title, available at http : //sardes.inrialpes.fr/papers.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 167

ever P ≡ Q, if P α−→ A, then there exists B ≡ A such that Q α−→ B, which is
proved by induction on the derivation of P ≡ Q. �

4 Congruences for the Kell Calculus

4.1 Context Bisimulation

We first define a notion of context bisimulation for the Kell calculus, which is directly
inspired by Sangiorgi’s context bisimulation for HOπ [31]. We consider an early form of
context bisimilarity. This is required to obtain a co-inductive characterization of barbed
congruence for a large enough class of pattern languages (and in particular languages
that support name passing).

We say that an agent A is closed if it contains no free process variable (fv(A) = ∅).
We note Ac and Kc the set of closed agents and closed processes, respectively. We use
the (partial) operator [[]] on agents, defined by:

a[[νc.C]]
Δ= νc.a[[C]] if c �= a a[[νc.F]]

Δ= νc.a[[F]] if c �= a

a[[Mm ‖ T]].S
Δ= M↓a

m ‖ a[T].S

Definition 3. A relation R ⊆ K2
c is a strong context simulation on closed processes if

for all P, Q closed, whenever 〈P, Q〉 ∈ R we have:

1. If P τ−→ P ′, then there exists Q′ such that Q τ−→ Q′ and 〈P ′, Q′〉 ∈ R.

2. If P α−−→ F , then:
(a) For all closed concretions C such that F@C ↓, there exists F ′ such that

Q
α−−→ F ′, and 〈F@C, F ′@C〉 ∈ R.

(b) For all closed concretionsC, D, and alla, T closed such that (a[[F@C]].T)@D ↓,

there exists F ′ such that Q α−−→ F ′, and

〈(a[[F@C]].T)@D, (a[[F ′@C]].T)@D〉 ∈ R

3. If P α−−→ C, then:
(a) For all closed abstractions F such that F@C ↓, there exists C ′ such that

Q α−−→ C ′, and 〈F@C, F@C ′〉 ∈ R.
(b) For all closed abstractions F , all closed concretions D, and all a, T closed such

that (a[[F@C]].T)@D ↓, there exists C ′ such that Q α−−→ C ′, and

〈(a[[F@C]].T)@D, (a[[F@C ′]].T)@D〉 ∈ R

(c) For all closed abstractions F and all a, T closed such that F@(a[[C]].T) ↓,

there exists C ′ such that Q α−−→ C ′, and

〈F@(a[[C]].T), F@(a[[C ′]].T)〉 ∈ R

168 A. Schmitt and J.-B. Stefani

(d) For all closed abstractions F , all closed concretions D and all a, b,S, T closed

such that (a[[F@(b[[C]].S)]].T)@D ↓, there exists C ′ such that Q α−−→ C ′,
and

〈(a[[F@(b[[C]].S)]].T)@D, (a[[F@(b[[C ′]].S)]].T)@D〉 ∈ R

In the above definition, in the second clause concerning abstractions, note that quan-
tification over concretions C includes concretions of the form ∅ ‖ 0. This covers the
cases (a[F].T)@D ↓.

Note also that the clauses in the above definition put no constraint on transitions of

the form P ε−→ Q, P α−→ F with F such that cases 2a and 2b are vacuously satisfied

(there is no concretion that matches the abstraction), and P α−→ C with C such that
cases 3a, 3b, 3c, and 3d are vacuously satisfied. Indeed, we deem such transitions to be
irrelevant for comparing process behaviors. They are just artefacts of the commitment
relation and do not constitute meaningful behavior: the first one is just an intermediate

step in the derivation of the meaningful transition P τ−→ Q, the other two are transitions
resulting from ill-matched abstractions and concretions and are therefore not relevant.

The definition of strong context simulation can be motivated as follows. Intuitively,
process Q simulates P if Q can match the silent moves of P (clause 1 of Definition
3), and if Q can match an action of P that transforms it into an abstraction (resp. a
concretion) with an action that transforms it into an abstraction (resp. a concretion) that
can simulates P ’s abstraction (resp. concretion) when applied to arbitrary concretions
(resp. abstractions). When considering abstractions, for instance, one need to consider
the different forms of application that may occur. It can be a direct application (clause 2a
of Definition 3) or an application involving a kell context, e.g. because the abstractions
considered require matching with an up message (clause 2b of Definition 3).

We can now define the notion of strong context bisimulation and the notion of strong
context congruence. Notice that the definition of strong context congruence requires clo-
sure under substitution: this is because, as in the π-calculus, strong context bisimulation
is not a congruence for input constructs.

Definition 4. A relation R ⊆ K2
c is a strong context bisimulation on closed processes

if R and its inverse R−1 are both strong context simulations.
Two closed processes P and Q are said to be strongly context bisimilar, noted P ∼ Q,

if there exists a strong context bisimulation R such that 〈P, Q〉 ∈ R.
Two processes P and Q are said to be strongly context congruent, noted P ∼c Q, if

for all substitutions θ such that (fn(P, Q)∪fv(P, Q)) ⊆ θ.dom and (θ.ran∩K) ⊆ Kc,
we have Pθ ∼ Qθ.

Example 3. This example deals with the notion of firewall in the jK calculus. For any
P = e〈T 〉, and any Q = e〈x〉↑ �S, we have νa.a[b[P]] ∼ 0 ∼ νa.a[b[Q]], for there are
no transitions possible from any of those terms. In fact, in the Kell calculus, no interaction
is possible between a process of the form P = νa.a[b[U]] and its environment (although
P → νa.a[b[U ′]] if U → U ′). The execution context E = νa.a[b[·]] constitutes a
perfect firewall.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 169

The following proposition is classical.

Proposition 1. The identity relation on K2 is a strong context bisimulation. If R1 and
R2 are strong context bisimulations, then so is their compositionR1R2. The relation∼
is an equivalence relation, and is the largest strong context bisimulation.

We now define a sufficient condition on pattern languages to ensure that strong
context congruence is indeed a congruence on Kell calculus processes. This condition
is called substitution-compatibility. We first give an auxiliary definition.

Definition 5. Let θ, θ′ be two substitutions such that θ.dom = θ′.dom, andR be a binary
relation on processes. We define θ R θ′ as: ∀y ∈ (θ.dom ∩ V), yθ R yθ′.

Let R be a binary relation on processes. We extend R to vectors of processes thus:
let R̃ and S̃ be two vectors of processes of the same size l, then R̃ R S̃ iff for all i,
1 ≤ i ≤ l, Ri R Si.

Definition 6. Let R =
{
〈P{R̃/x̃}, P{S̃/x̃}〉 | P ∈ K, fv(P) ⊆ x̃, R̃ ∼ S̃

}
. A pat-

tern language L is substitution-compatible iff for all ξ ∈ L, and all M, R̃, S̃, x̃, such
that R̃, S̃ are closed, R̃ ∼ S̃, and fv(M) ⊆ x̃, we have:

match(ξ, M{R̃/x̃}) % θ implies ∃θ′, match(ξ, M{S̃/x̃}) % θ′ and θRθ′

Example 4. The pattern language of the jK calculus is substitution-compatible. Consider
ξ = a[x], then we have match(ξ, M) �= ⊥ if M = a[P]. We have M{R̃/ỹ} =
a[P{R̃/ỹ}] and M{S̃/ỹ} = a[P{S̃/ỹ}]. Now, define

θ
Δ= match(ξ, M{R̃/ỹ}) =

{
P{ ˜R/̃y}/x

}
θ′ Δ= match(ξ, M{S̃/ỹ}) =

{
P{ ˜S/̃y}/x

}
If R̃ ∼ S̃, we have xθ R xθ′, as required. The same is true for other patterns in jK.

Theorem 2. If the pattern language L is substitution-compatible, then ∼c is a congru-
ence on K.

Proof. (Sketch) The crucial step in the proof is a substitution lemma which asserts that, if
R1, . . . , Rn andS1, . . . Sn are closed processes such that Ri ∼ Si for all i ∈ {1, . . . , n},
then for all P such that fv(P) ⊆ x̃, we have P{R̃/x̃} ∼ P{S̃/x̃}. The substitution
lemma is proved by proving that the reflexive and transivitive closure U of the relation
≡ R ≡ is a strong context bisimulation, whereR = {〈P, Q〉 | P = νã.H{R̃/x̃}, Q =
νb̃.H{S̃/x̃}, R̃ = R1, . . . , Rn, S̃ = S1, . . . ,Sn, fv(H) ⊆ x̃, νã.Ri ∼ νb̃.Si, ã ∩
fn(H) = b̃ ∩ fn(H) = ∅}. This is proved in turn by showing that R progresses to U .
The notion of progress is an adaptation to the Kell calculus context bisimulation of the
notion of strong progress defined in chapter 2 of [32]. In turn, this is proved by induction

on the derivation of the transition P α−→ A, when considering 〈P, Q〉 ∈ R. �

170 A. Schmitt and J.-B. Stefani

It is worth pointing out that the technique used by Sangiorgi for the higher-order π-
calculus [31] is not applicable in our context. Indeed, following the proof of the equivalent
lemma in [31], would require us first to prove directly that a[R] ∼ a[S] if R ∼ S, for R
andS closed. But proving that a[R] ∼ a[S] implies in our case that we prove in particular
that, for all P , (a[x])P@a[R] ∼ (a[x])P@a[S], i.e. that P{R/x} ∼ P{S/x}, which
leads to a circular argument.

4.2 Contextual Equivalence

We now define strong barbed bisimulation for the Kell calculus. Barbs of a Kell calculus
process are defined as follows.

Definition 7. Observability predicates, ↓a, are defined as follows: P ↓a if one of the
following cases holds:

1. P ≡ νc̃.a〈P ′〉.Q | R, with a �∈ c̃.
2. P ≡ νc̃.b[a〈P ′〉.Q | R].T | S, with a �∈ c̃.
3. P ≡ νc̃.a [Q] .T | R, with a �∈ c̃.

Intuitively, a barb on a signals a local message (clause 1 of Definition 7), a down
message (clause 2 of Definition 7), or a kell message (clause 3 of Definition 7) on channel
a. These observations are similar to those found e.g. in Ambient calculi. They are also
relatively weak: for instance, they do not distinguish between a local message or a down
message. However, they are valid observations, regardless of the pattern language used.
One could of course imagine strenghening such observations, given more information
on the pattern language. This is left for further study.

Definition 8. A relationR ⊆ K2 is a strong barbed simulation if whenever 〈P, Q〉 ∈ R,
we have:

1. If P ↓a then Q ↓a.
2. If P → P ′, then there exists Q′ such that Q → Q′ and 〈P ′, Q′〉 ∈ R.

A relation R is a strong barbed bisimulation if R and its inverse R−1 are both strong
barbed simulations.

Definition 9. Two processes P and Q are said to be strongly barbed bisimilar, noted
P ∼b Q, if there exists a strong barbed bisimulation R such that 〈P, Q〉 ∈ R.

Definition 10. Two processes P and Q are said to be strong barbed congruent, noted
P ∼c

b Q, if, for all contexts C we have C{P} ∼b C{Q}.

The following proposition is classical.

Proposition 2. ∼b is an equivalence relation and the largest strong barbed bisimulation.
∼c

b is an equivalence relation and the largest congruence included in ∼b.

For pattern languages that are substitution-compatible and which contain the pattern
language of the jK calculus, the notion of strong barbed congruence and strong context
congruence coincide. This is given by the following theorem:

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 171

Theorem 3. If L is substitution-compatible and contains the pattern language of the jK
calculus, then ∼c and ∼c

b coincide, i.e. for all P, Q ∈ K, P ∼c Q iff P ∼c
b Q.

Proof. (Sketch) We first note that∼c⊆∼c
b, since∼⊆∼b and∼c

b is the largest congruence
included in ∼b. We then stratify the ∼ relation, i.e. we define a family of relations ∼k,
where k ranges over integers, such that ∼ =

⋂
∼k. We then prove by induction that

for all integers k, if P �∼k Q, then there exists a context C such that C{P} �∼b C{Q}.

The induction case is dealt with by considering P α−→ A and the different cases for α,
exhibiting appropriate discriminating contexts for each case. �

5 Instantiating the Kell Calculus

We now present several instantiations of the pattern language for the Kell calculus that
illustrate the flexibility of our parameterized approach.

5.1 A Polyadic Name-Passing jK

ξ ::= J | ξk | J | ξk J ::= ξm | ξd | ξu | J | J
ξm ::= a〈ρ〉 ξu ::= a〈ρ〉↑ ξd ::= a〈ρ〉↓ ξk ::= a [x]
ρ ::= a〈ρ〉 | ρ | ρ ρ ::= x | ρ | (a)〈ρ〉 |

In this pattern language, the special pattern matches anything.
For convenience, we write a〈x1, · · · , xn〉 for a〈1〈x1〉 | · · · | n〈xn〉〉 where 1, · · · , n

only occur in these encodings.
We also write a〈0〉 for an argument a of a message in processes, and a〈 〉 in patterns.

That is the process
(a〈(b)〉 | c〈k〉 � b〈k〉) | a〈d〉 | c〈k〉

corresponds to

(a〈(b)〈 〉〉 | c〈k〈 〉〉 � b〈k〈0〉〉) | a〈d〈0〉〉 | c〈k〈0〉〉

The matching functions are easily defined by induction:

matchm(a〈ρ〉, a〈P 〉) Δ= matchr(ρ, P)

matchd(a〈ρ〉↓, a〈P 〉↓b) Δ= matchr(ρ, P)

matchu(a〈ρ〉↑, a〈P 〉↑b) Δ= matchr(ρ, P)

matchk(a [x] , a [P]) Δ= {P/x}
matchr(, P) Δ= {}
matchr(x, P) Δ= {P/x}
matchr(ρ, P) Δ= match(ρ, P)

matchr((a)〈ρ〉, b〈P 〉) Δ= {b/a} ⊕ matchr(ρ, P)

172 A. Schmitt and J.-B. Stefani

As an illlustration of the expressive power of the polyadic name-passing jK calculus,
we consider an encoding of a π-calculus based instance (without hierarchical local-
ities) of the generic membrane model developed by G. Boudol [4]. In this model, a
locality has the form a(S)[P], similar to that of M-calculus localities, with a control
part S and a process part P . We thus consider an instance of the membrane model
where both the control and process parts are written using the polyadic π-calculus. We
refer the reader to G. Boudol’s article in this volume for details about the membrane
model.

The encoding of the π-calculus instance of the membrane model is given by the
functions [[]], defined inductively in Figure 12 (whereS, T are arbitrary control processes
or plain processes, A, B are networks, i.e. parallel compositions of localities and network
messages of the form a〈M〉, and where M are local messages of the form u〈Ṽ 〉, with u
a channel name, V a value, which can be either a name or a process):

[[nil]]a
Δ= 0 [[n]]a

Δ= n

[[u(x̃).S]]a
Δ= u〈x̃〉 � [[S]]a [[!u(x̃).S]]a

Δ= u〈x̃〉 � [[S]]a
[[u〈Ṽ 〉]]a Δ= u〈[[Ṽ]]a〉 [[νn.S]]a

Δ= νn.[[S]]a
[[out〈b, M〉.S]]a

Δ= out〈b, [[M]]a〉.[[S]]a [[up〈M〉]]a Δ= up〈[[M]]a〉
[[in〈P 〉.S]]a

Δ= in〈a, [[P]]a〉.[[S]]a [[S | T]]a
Δ= [[S]]a | [[T]]a

[[a(S)[P]]] Δ= νc.a[MS(a) | [[S]]a | c[MP(a) | [[P]]a]] | Env
[[A ‖ B]]

Δ= [[A]] | [[B]] [[a〈M〉]] Δ= in〈a, [[M]]a〉
[[νn.A]]

Δ= νn.[[A]]

Fig. 12. Encoding the membrane calculus

The auxiliary processes MS(a), MP(a) and Env are defined as follows (note that they
allow the incoming of messages from the outside—environment of the locality or the
control process S—and from the inside—the plain process P):

MS(a) Δ= (in〈a, x〉↑ �x) | (up〈x〉↓ �S | x)

MP(a) Δ= (in〈a, x〉↑ �x)

Env
Δ= out〈(b), x〉↓ � in〈b, x〉

As one can see, the notion of membrane readily translates into a pair of nested kells,
with the outer one containing an encoding of the control part, and the inner one con-
taining an encoding of the process part. It is important to note that the process Env
above is coalescing, i.e. Env | Env ∼c Env, which ensures that the encoding is compo-
sitional.

5.2 FraKtal

We present in this section a calculus, called FraKtal, in which we can model several
interesting features of a recent reflective component model called Fractal [5]. Frac-
tal provides traditional notions of commponent-based software-engineering, namely

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 173

components with input and output interfaces (or ports), which can be explicitly con-
nected or disconnected during execution by means of bindings (or connectors). In
addition, Fractal allows different forms of component introspection and intercession,
such as adding and removing subcomponents, adding and removing interceptors on
interfaces, controlling a component execution and life-cycle, etc. Interestingly, the re-
flective features in the Fractal model are introduced by means of a general compo-
nent structure which distinguishes between the component membrane, which contains
all the control functions, and the component content, which consists of other compo-
nents (the subcomponents). This distinction between component membrane and com-
ponent content is not dissimilar to that of the generic membrane model mentioned
above.

The calculus we use to model components is a simple extension of the previous
calculus with a construction that let us check that the argument of a message is not
a given name, which we write a. FraKtal also provide a way to bind such a name:
((m) �= a) matches a name that is not a and binds it to m.

ξ ::= J | ξk | J | ξk J ::= ξm | ξd | ξu | J | J
ξm ::= a〈ρ〉 ξu ::= a〈ρ〉↑ ξd ::= a〈ρ〉↓ ξk ::= a [x]
ρ ::= a〈ρ〉 | ρ | ρ ρ ::= x | ρ | (a)〈ρ〉 | a〈ρ〉 | ((m) �= a)〈ρ〉 |

We similarly extend the matching functions, adding two cases for the helper function
matchr:

matchr(a〈ρ〉, b〈P 〉) Δ= matchr(ρ, P) if a �= b

matchr(((m) �= a)〈ρ〉, b〈P 〉) Δ= {b/m} ⊕ matchr(ρ, P) if a �= b

Sandboxes. We now present a way to isolate some computation from the environment
as well as cleaning up the remains of this computation, in the form of a sandbox, defined
as:

sandbox〈x, (κ)〉 Δ= νb.νr.

((
r〈z〉↓ � (b [y] �0) | κ〈z〉

)
b
[(
κ〈z〉↓ � r〈z〉

)
| b [x]

])
A sandbox works the following way: a firewall νb.b [b [P]] is created, with an in-

termediate definition that waits for some message on κ supposed to contain the re-
sult of the computation. When such a message becomes available, it is consumed and
forwarded to a private channel r (this channel being private, there is no risk that the
computation in the sandbox, or some process in the environment, consumes it by
mistake). This message triggers another rule that forwards it back to the κ channel
outside of the sandbox as the final result, and creates a rule to garbage collect the
sandbox.

Encoding Association Lists. Our association list encoding, defined in Figure 13, uses
sandboxes for two reasons. First, it allows for handling lists atomically (for instance to
check that a list does not contain some value before changing it). Second, it lets us clean
up recursive definitions used to iterate on the list.

174 A. Schmitt and J.-B. Stefani

new list〈κ〉 � ν

(
lop, g, s, r

l, cons,nil

)
.

(
List

(
lop, g, s, r

l, cons,nil

) ∣∣∣∣ κ〈lop, g, s, r〉
)

List

(
lop, g, s, r

l, cons,nil

)
Δ=

(
lop〈p, κ〉 � Lop

(
p, κ, g, s, r

l, cons,nil

))

Lop

(
p, κ, g, s, r

l, cons,nil

)
Δ= νκ′.

⎛⎜⎜⎜⎝l〈xl〉 �
sandbox

〈⎛⎜⎝ p | l〈xl〉 | L
(

g, s, r

l, cons,nil

)
(
κ〈z〉 | l〈x′

l〉 � κ′〈z, x′
l〉

)
⎞⎟⎠ , κ′

〉
(
κ′〈z, x′

l〉 � κ〈z〉 | l〈x′
l〉

)
⎞⎟⎟⎟⎠

L

(
g, s, r

l, cons,nil

)
Δ= Set(s, l, cons) | Get(g, l, cons,nil) | Rem(r, l, cons,nil)

Set(s, l, cons) Δ= s〈(n), y, z〉 | l〈xl〉 � l〈cons〈n〈y〉, xl〉〉 | z

Get(g, l, cons,nil) Δ= g〈(n), (κ), x〉 | l〈xl〉 � Geti
(

n, κ, x, xl

cons,nil

)
| l〈xl〉

Geti

(
n, κ, x, xl

cons,nil

)
Δ= νgi.

⎛⎜⎝ gi〈cons〈n〈y〉, z〉〉 �κ〈y〉
gi〈cons〈n〈y〉, z〉〉 � gi〈z〉

gi〈nil〈〉〉 �x

∣∣∣∣∣∣∣ gi〈xl〉

⎞⎟⎠
Rem(r, l, cons,nil) Δ= r〈(n), (κ), x〉 � Remi

(
n, κ, x, xl

l, cons,nil

)
| l〈xl〉

Remi

(
n, κ, x, xl

l, cons,nil

)
Δ= ν

(
ri

rev

)
.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ri〈cons〈n〈y〉, z〉, z′〉 �κ〈y〉 | rev〈z, z′〉
ri〈cons〈((m) �= n)〈y〉, z〉, z′〉 � ri〈z, cons〈m〈y〉, z′〉〉

ri〈nil〈〉, z′〉 �x | rev〈nil〈〉, z′〉
rev〈z, cons〈x, z′〉〉 � rev〈cons〈x, z〉, z′〉

rev〈z,nil〈〉〉 � l〈z〉
ri〈xl〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 13. Operations on Lists

We can use such association lists to add a value to a key only if the key is not already
present, as in (we assume that lop, get, and set are known):

add1〈(n), x, (ok), (fail)〉 � νκ.

⎛⎜⎝ lop

〈(
get〈n, fail , set〈n, x,κ〈ok〈〉〉〉〉
(fail〈y〉 � κ〈fail〈y〉〉)

)
,κ

〉
(κ〈z〉 � z)

⎞⎟⎠
Encoding Components. The encoding we choose for components is very much inspired
by the encoding of the membrane calculus above: the controller of a component is a
kell that contains the content of the component, which is another kell. The controller
may contain other subcomponents, which implement for instance bindings between
interfaces. For instance, in the following configuration, a componentA (whose membrane

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 175

is named Am), exposes a client interface Ac that is bound to the server interface Bs of
component B. Following the Fractal approach, the binding is under control of A.

Am

⎡⎢⎢⎢⎢⎣
bind

[(
Ac〈x〉↑ � outb〈Bs〈x〉〉

)]
(
outb〈y〉↓ � out〈y〉

)
(
Aci〈x〉↓ � Ac〈x〉

)
∣∣∣∣∣∣∣∣∣∣
A [Aci〈args〉]

⎤⎥⎥⎥⎥⎦
Bm

⎡⎣ (Bs〈x〉↑ � Bsi〈x〉)
Bsi〈args〉

∣∣∣∣∣∣ B [· · ·]

⎤⎦
(
out〈y〉↓ � y

)
After a number of reductions, the message Aci〈args〉 on the internal interface bound

to Ac reaches the internal interface bound to Bs and the final configuration is:

Am

⎡⎢⎢⎢⎢⎣
bind

[(
Ac〈x〉↑ � outb〈Bs〈x〉〉

)]
(
outb〈y〉↓ � out〈y〉

)
(
Aci〈x〉↓ � Ac〈x〉

)
∣∣∣∣∣∣∣∣∣∣
A []

⎤⎥⎥⎥⎥⎦
Bm

⎡⎣ (Bs〈x〉↑ � Bsi〈x〉)
Bsi〈args〉

∣∣∣∣∣∣ B [· · ·]

⎤⎦
(
out〈y〉↓ � y

)
We are currently investigating the modelling of control features of Fractal compo-

nents, which require in particular the use of association lists presented above to store the
list of interfaces (both client and server), the list of subcomponents, as well as the list of
bindings between interfaces.

6 Conclusion and Related Work

We have introduced in this paper the Kell calculus, a family of higher-order process
calculi with hierarchical localities, and studied two notions of (strong) equivalence for
the kell calculus: a form of context bisimilarity and a notion of contextual equivalence,
inspired, respectively, by Sangiorgi’s contextual bisimilarity and barbed congruence for
the higher-order π-calculus. We have given sufficient conditions on pattern languages
to obtain a sound and complete co-inductive characterization of barbed congruence (or
contextual equivalence). To the best of our knowledge this is the first time such a result
is obtained for a higher-order calculus with hierarchical localities.

The Kell calculus is an attempt to simplify the M-calculus and to generalize it, through
the introduction of a family of input pattern languages. Both the M-calculus and the Kell

176 A. Schmitt and J.-B. Stefani

calculus highlight the importance of programmable membranes to deal with different
forms of localities, and the need to enforce a principle of local actions in a calculus
for mobile and distributed programming. These concerns are shared by the work on a
generic membrane model, developed as part of the Mikado project [4]. We believe our
work on the Kell calculus bisimulation semantics can be of direct use to develop the
semantical theory of the Mikado generic membrane model.

A number of recent works on bisimulations for mobile agent systems focus on dif-
ferent variants of Mobile Ambients, and include e.g. work on a bisimulation-based
equivalence for Mobile Ambients with passwords [26], work on a sound and complete
co-inductive characterization of a contextual equivalence for New Boxed Ambients [7]
and for the Calculus of Mobile Resources [17]. The work by Hennessy et al. on SafeDpi
[18] contains a sound and complete characterization of (dependently) typed contextual
equivalence for a higher-order process calculus with flat localities. All these works rely
on a form of contextual bisimulation, but none of them support process passivation.

Apart from the M-calculus, which directly inspired the development of the Kell
calculus, the only process calculus with localities which we know of that contains a
feature related to process passivation is the Seal calculus. The migrate and replicate
operator of the Seal calculus provides much of the expressive power of the Kell calculus
passivation facility. The work closest to ours in terms of bisimulation semantics, is
therefore the work by Castagna et al on congruences for the Seal calculus [10]. This
work defines a notion of hoe-bisimilarity, which can be understood as an adaptation
of Sangiorgi’s higher-order context bisimilarity, and which is proved to be sound with
respect to a natural contextual equivalence. Hoe-bisimilarity is not complete with respect
to contextual equivalence in the Seal calculus, however.

Much work remains to be done on a bisimulation theory for the Kell calculus. In par-
ticular, we have recently obtained a tractable (i.e. finitary) co-inductive characterization
of strong contextual equivalence for certain instances of the Kell calculus, as was done
by Sangiorgi for the higher-order π-calculus [31] and recently extended by Jeffrey and
Rathke in [20]. We plan to extend this result to the weak and typed cases.

We believe the connection between the Kell calculus and component-based program-
ming, which was just sketched in the last section of this paper, to be very promising.
We are currently working on a full Fractal interpretation in FraKtal, which should al-
low us to leverage recent results in type systems for locality-based process calculi for
component-based programming.

Acknowledgments. This paper has benefited from several discussions on the Kell calcu-
lus, over the past year, with David Teller, Daniel Hirschkoff, Tom Hirschowitz, Matthew
Hennessy,VascoVasconcelos, Eugenio Moggi, Gérard Boudol, and Xudong Guan, which
have helped clarify many points, and correct several errors. The contribution of all these
individuals is greatly appreciated. The research reported in this paper has been supported
in part by the IST Mikado project (IST-2001-32222).

References

1. J.Aldrich, C. Chambers, and D. Notkin. Architectural Reasoning inArchJava. In Proceedings
16th European Conference on Object-Oriented Programming (ECOOP), 2002.

The Kell Calculus: A Family of Higher-Order Distributed Process Calculi 177

2. R. Amadio. An asynchronous model of locality, failure, and process mobility. Technical
report, INRIA RR-3109, INRIA Sophia-Antipolis, France, 1997.

3. F. Barbanera, M. Bugliesi, M. Dezani-Ciancaglini, and V. Sassone. A calculus of bounded
capacities. In ASIAN 03, volume 2896 of LNCS, pages 205–223. Springer, 2003.

4. G. Boudol. A Generic Membrane Model. this volume, 2004.
5. E. Bruneton, V. Quéma T. Coupaye, M. Leclercq, and J.B. Stefani. An Open Component

Model and its Support in Java. In Proceedings 7th International Symposium on Component-
based Software Engineering (CBSE 2004), LNCS 3054. Springer, 2004.

6. M. Bugliesi, G. Castagna, and S. Crafa. Boxed ambients. In 4th International Symposium on
Theoretical Aspects of Computer Software (TACS), 2001.

7. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication Interference in Mobile
Boxed Ambients. In Proceedings of the 22nd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FST-TCS ‘02, volume LNCS 2556. Springer,
2002.

8. M. Carbone and S. Maffeis. On the Expressive Power of Polyadic Synchronization in π-
calculus. Electronic Notes in Theorectical Computer Science, vol. 68, no 2, 2002.

9. L. Cardelli and A. Gordon. Mobile Ambients. Theoretical Computer Science, vol. 240, no 1,
2000.

10. G. Castagna and F. Zappa. The Seal Calculus Revisited. In Proceedings 22th Conference on
the Foundations of Software Technology and Theoretical Computer Science, number 2556 in
LNCS. Springer, 2002.

11. I. Castellani. Process algebras with localities. In Handbook of Process Algebra, J. Bergstra,
A. Ponse and S. Smolka (eds). Elsevier, 2001.

12. D. Clarke and T. Wrigstad. External Uniqueness is Unique Enough. In Proceedings 17th
European Conference on Object-Oriented Programming (ECOOP), 2003.

13. M. Coppo, M. Dezani-Ciancaglini, E. Giovannetti, and I. Salvo. M3: Mobility types for
mobile processes in mobile ambients. In CATS 2003), volume 78 of ENTCS, 2003.

14. S. Dal-Zilio. Mobile Processes: A Commented Bibliography. In Modeling and Verification
of Parallel Processes, 4th Summer School, MOVEP 2000, volume 2067 of LNCS. Springer,
2001.

15. C. Fournet. The Join-Calculus. PhD thesis, Ecole Polytechnique, Palaiseau, France, 1998.
16. C. Fournet, G. Gonthier, J.J. Levy, L. Maranget, and D. Remy. A calculus of mobile agents.

In In Proceedings 7th International Conference on Concurrency Theory (CONCUR ‘96),
Lecture Notes in Computer Science 1119. Springer Verlag, 1996.

17. J.C. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile resources. In Proceed-
ings 13th International Conference on Concurrency Theory (CONCUR 02), 2002.

18. M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: a language for controlling mobile code.
Technical Report 2003:02, University of Sussex, 2003. Extended abstract presented at Foun-
dations of Software Science and Computation Structures - 7th International Conference,
FOSSACS 2004.

19. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Technical
report, Technical Report 2/98 – School of Cognitive and Computer Sciences, University of
Sussex, UK, 1998.

20. A. Jeffrey and J. Rathke. Contextual equivalence for higher-order π-calculus revisited. In
Proceedings, 19th Conference on the Mathematical Foundations of Programming Semantics,
2003.

21. G. Leavens and M. Sitaraman (eds). Foundations of Component-Based Systems. Cambridge
University Press, 2000.

22. L. Leth and B. Thomsen. Some facile chemistry. Formal Aspects of Computing Vol.7, No 3,
1995.

178 A. Schmitt and J.-B. Stefani

23. F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings 27th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2000), 2000.

24. N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
25. N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software

Architecture Description Languages. IEEE Transactions on Software Engineering, vol. 26,
no. 1, 2000.

26. M. Merro and M. Hennessy. Bisimulation congruences in safe ambients. In 29th ACM Sym-
posium on Principles of Programming Languages (POPL), Portland, Oregon, 16-18 January,
2002.

27. R. Milner. Communicating and mobile systems : the π-calculus. Cambridge University Press,
1999.

28. R. De Nicola, G.L. Ferrari, and R. Pugliese. Klaim: a Kernel Language for Agents Interaction
and Mobility. IEEE Trans. on Software Engineering, Vol. 24, no 5, 1998.

29. R. De Nicola, G.L. Ferrari, R. Pugliese, and B.Venneri. Types forAccess Control. Theoretical
Computer Science, Vol. 240, no 1, 2000.

30. A. Ravara, A. Matos, V. Vasconcelos, and L. Lopes. Lexically scoping distribution: what you
see is what you get. In FGC: Foundations of Global Computing, volume 85(1) of ENTCS.
Elsevier, 2003.

31. D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computa-
tion,Vol. 131, No 2, 1996.

32. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, 2001.

33. A. Schmitt and J.B. Stefani. The M-calculus: A Higher-Order Distributed Process Calculus.
In Proceedings 30th Annual ACM Symposium on Principles of Programming Languages
(POPL), 2003.

34. P. Sewell and J. Vitek. Secure Composition of Insecure Components. Journal of Computer
Security, 2000. Invited submission for a CSFW00 special issue.

35. J.B. Stefani. A calculus of kells. In Vladimiro Sassone, editor, Proceedings International
Workshop on Foundations of Global Computing, Electronic Notes in Theoretical Computer
Science, volume 85(1). Elsevier, 2003.

36. B. Thomsen. A Theory of Higher Order Communicating Systems. Information and Compu-
tation, Vol. 116, No 1, 1995.

37. Vasco T. Vasconcelos. A note on a typing system for the higher-order π-calculus. September
1993.

38. P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infrastructure. IEEE Concur-
rency, vol. 8, no 2, 2000.

39. N.Yoshida and M. Hennessy. Assigning types to processes. In 15th Annual IEEE Symposium
on Logic in Computer Science (LICS), 2000.

A Software Framework for Rapid Prototyping of
Run-Time Systems for Mobile Calculi%

Lorenzo Bettini1, Rocco De Nicola1, Daniele Falassi1, Marc Lacoste2, Luı́s Lopes3,
Licı́nio Oliveira3, Hervé Paulino4, and Vasco T. Vasconcelos5

1 Dipartimento di Sistemi e Informatica, Università di Firenze
2 Distributed Systems Architecture Department, France Telecom R & D

3 Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
4 Departamento de Informática, Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa

5 Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa

Abstract. We describe the architecture and the implementation of the Mikado
software framework, that we call IMC (Implementing Mobile Calculi). The frame-
work aims at providing the programmer with primitives to design and implement
run-time systems for distributed process calculi. The paper describes the four main
components of abstract machines for mobile calculi (node topology, naming and
binding, communication protocols and mobility) that have been implemented as
Java packages. The paper also contains the description of a prototype implementa-
tion of a run-time system for the Distributed Pi-Calculus relying on the presented
framework.

1 Introduction

It has been widely argued that mobility will be an important technology for applications
over a global network. The main breakthrough is that global applications may exchange
mobile code [9, 33], not just data. A particular instance of mobile code is the concept of
mobile agents [14, 19, 36]: software units that can suspend their execution and migrate
to new hosts, where they can resume their execution.

The programming paradigm based on mobile agents is different from remote evalua-
tion or code on-demand in that the code does not need to be sent and retrieved explicitly:
the agent migrates autonomously somewhere else and continues executing there. An
agent is self contained in that it possesses all the data it needs to execute and migrate,
since this information is typically carried with the agent during migration. Decisions of
executing and moving are taken according to information supplied by the programmer
of the agent. Agents may also autonomously decide to take different choices due to
contextual events such as, temporary unavailability of networks or not responding hosts.

Dealing with mobile code and mobile agents raises a number of issues such as:
packing of moving agents, security, protocols, naming, network architecture. We are

� This work has been funded by EU-FET on Global Computing, project Mikado IST-2001-
32222. The funding body is not responsible for any use that might be made of the results
presented here.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 179–207, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

180 L. Bettini et al.

developing a generic framework called IMC (Implementing Mobile Calculi) that can be
used as a kind of middleware for the implementation of different mobile programming
systems. Such a framework aims at being as general as possible. It can be, and indeed
has been, used to implement existing systems (Klava [5], Safe Ambients [32], Jcl [12]
and DiTyCO [26]) on top of it. But it also provides the necessary tools for implementing
new languages directly derived from calculi for mobility.

The implementer of a new language would need concentrating on the parts that are
really specific of his system, while relying on the framework for the recurrent standard
mechanisms. The development of prototype implementations should then be quicker
and the programmers should be relieved from dealing with low level details.

For the sake of dissemination and portability, the framework is being developed as
Java packages. Thus, the used virtual machine technology is the one based on the Java
Virtual Machine. This choice is also motivated by the fact that most existing mobile code
systems are based on Java.

The proposed middleware framework aims at implementing (or, at least, specifying)
all the required functionalities for arbitrary components to communicate and move in
a distributed setting. Four abstractions have been isolated as being fundamental to this
goal and each of them has been implemented as a sub-package of our IMC Java package:

– node topology
– naming and binding
– communication protocols
– mobility

The purpose of the sub-package for Node Topology is to describe the encoding of
the topological structure of the network and to take into account the effect of distributed
computations performing changes in its overall structure. Its main components deal with
primitives for connection and disconnection, node creation and deletion, domain specific
node coordination (membrane, guardian, etc.), node-based decentralized topology and
actual implementation of nodes and node naming.

The purpose of the sub-package for Naming and Binding is to define a uniform way
to designate and interconnect the set of objects involved in the communication paths be-
tween computational nodes. We call such a set of objects a binding. Its main components
are designed to deal with primitives for name creation and deletion, typing and compat-
ibility checking, policies for name resolution (static, dynamic, mixed, bindings, ...) and
name marshalling and un-marshalling.

The purpose of the sub-package for Communication Protocols is to identify both
the abstractions and the primitives for logical and physical node connectivity, as well as
the strategies that can be used to capture and perform communications between compu-
tational nodes. Its components are designed to deal with abstract, possibly secure, send
and receive primitives, marshalling of messages at network level, session management,
connection checking and multicasting.

The purpose of the sub-package for Code Mobility is to provide the basic func-
tionalities for making code mobility transparent to the programmer; all issues related
to code marshaling and code dispatch are handled automatically by the classes of the
framework. Its components are designed to deal with object marshalling, code migration,
and dynamic loading of code.

A Software Framework for Rapid Prototyping of Run-Time Systems 181

The general aim of the framework is to assist both the designer and the programmer
of a virtual machine or run-time system implementing a domain-based programming
model. The four components of the framework are connected and cooperate in order
to implement the abstract representation of a distributed application with mobile code.
Thus, for instance, the topology package relies on the protocols package to actu-
ally communicate over the network and the protocols package, in turn, relies on the
mobility package to create packets containing migrating code, and so on. We observe
that these cooperations are made through interfaces and abstract classes. Nonetheless,
IMC already provides concrete implementations for the standard and most used func-
tionalities that should fit most Java mobile framework requirements (e.g., Java byte-code
mobility and TCP/IP sockets).

The user of the IMC package can then customize parts of the framework by providing
its own implementations for the interfaces used in the package. In this respect, the IMC
framework will be straightforward to use if there is no need of specific advanced features.
Nevertheless, the frameworks is open to customizations if these are required by the
specific mobility system one is willing to implement. For example, the TyCO system
makes use of its own code dispatch strategy and overrides the standard Java byte-code
mobility. Customization of the framework can be achieved seamlessly thanks to design
patterns such as factory method and abstract factory [13] that are widely used throughout
the package.

The above mentioned sub-packages have been developed over the mikado sites by
taking advantage of CVS server organized as a single project org.mikado.imc struc-
tured with four tasks:

– org.mikado.imc.topology
– org.mikado.imc.naming
– org.mikado.imc.protocols
– org.mikado.imc.mobility

The rest of the paper contains the detailed description of the four sub-packages and
ends with an experimental implementation of Dπ, the only model considered within the
Mikado project that has not yet been implemented.

2 Node Topology

The purpose of this part of the framework is to describe the encoding of the topological
structure of the network and to take into account the effect of distributed computations
performing changes in its overall structure.

Motivation

The notion of node appears in most existing implementations of mobile calculi, such as,
e.g., [4, 5, 12, 32, 34]. However, the internal structure of the node itself is programming-
model specific. The computational nodes can include data structures ranging from
definitions (TyCO, Jcl/JoCaml, CLAM), processes (X-Klaim/Klava, TyCO, SAM,

182 L. Bettini et al.

Jcl/JoCaml, CLAM) channels (TyCO, SAM, Jcl/JoCaml, CLAM), objects (TyCO)
and tuple spaces (X-Klaim/Klava).

From this observation we designed the Node Topology package so that it would
provide both a programming abstraction and a generic concrete implementation for
a node whilst not providing any details of the specific implementation of the virtual
machine that will run on it.

Another common property of the current mobile calculi implementations is that the
nodes are designated to use some form of unique identifier. It is noteworthy that the
structure of the node identifier is itself implementation specific. Also, node identifiers
must be created dynamically when new nodes are added to a network.

Thus, we require the Node Topology framework to provide both an abstraction for
a node identifier that encapsulates its implementation details and, some mechanism to
create fresh node identifiers in accordance with some implementation-specific format.

In the existing implementations of mobile calculi, the topological organization of
nodes is either hierarchical, i.e., tree-structured, or flat. For example, SAM, Jcl/JoCaml,
X-Klaim/Klava and CLAM use a tree-structured topology of nodes, while TyCO nodes
are organized according to a flat structure. Primitives for expressing a topological hier-
archy of nodes can easily be used to reflect a flat organization of nodes by adding a root
(virtual) location whose children are the given nodes. Thus, we feel that the framework
should support hierarchical node composition patterns. This in turn implies providing
tools to navigate through the network hierarchy and retrieve information about its struc-
ture.

Finally, some process calculi have reduction rules that imply adding new nodes to
the hierarchy or removing existing nodes (or moving them). This can be due to the
strict implementation of the reduction rules, or to new components dynamically being
introduced into a running system. Thus, the Node Topology framework should provide
primitives to add new nodes to the network hierarchy or to remove existing nodes.

Design

The above requirements lead to the following design for the Node Topology sub-package
in the form of Java interfaces. Concrete and generic default implementations of these
interfaces are also provided in the sub-package and named by prefixing the interface
name with Mikado (e.g., a default implementation for interface Node is provided by the
class MikadoNode).

interface NodeIdentifier {
public Object getIdentifier();

}

interface Node {
public String getNodeName();
public NodeIdentifier getNodeIdentifier();
public Object getImplementation();
public NodeIdentifier getParentNode();
public NodeIdentifier [] getChildNodes();
public void connect(NodeIdentifier nodeId);
public void disconnect();

A Software Framework for Rapid Prototyping of Run-Time Systems 183

public Registry getRegistry();
}

The NodeIdentifier interface defines a generic way to identify a computational
node component. Implementation-specific node identifiers may be obtained by designing
specific classes implementing that interface. The Node interface describes the basic
computational nodes which may also be called location, site or agent, according to the
underlying programming model. It contains a reference to its node identity interface, as
well as a reference to an object holding the internal implementation of the node. That
particular structure is implementation specific, and is not part of the Node Topology
sub-package.

The requirements of a hierarchical network topology and support for editing such a hi-
erarchy lead to the introduction of topology management functionality directly within the
Node interface. Thus, the methods getParentNode() and getChildNodes() allow a
node to inspect its network neighborhood. The methods connect() and disconnect()
handle a node’s connection to a specific point (as a sub-node) of the hierarchy and its
disconnection when leaving the network or migrating to another point in the hierarchy.

The method getRegistry() provides access to a node’s table of exported resources
(e.g., channels) and will be further commented when describing the Naming and Binding
sub-package.

A special node in a Mikado Network, the NetworkServer, acts as a portal where
all nodes adhering to a computation must first register. The NetworkServer han-
dles the mappings between nodes and their physical locations (e.g., IP addresses) in
a Mikado Network. The network server accepts different implementations and network
configurations that can be specified at startup by providing an implementation for the
interface NetworkServerImpl and a class holding the network configuration called
Preferences. These settings and the current server handle can be obtained through a
set of methods (getImpl(), getServer() and getConfig()).

class NetworkServer {
NetworkServer(String [] args);
static NetworkServer getServer();
static NetworkServerImpl getImpl();
Preferences getConfig();
...

}

Examples

IMC’s topology revolves around the interface Node. This interface represents a running
instance of a virtual machine and includes a set of operations that manipulate that same
VM instance. To enforce interoperability between the different virtual machines that
may end up subclassing IMC, a base implementation for the interface Node has already
been provided, in the form of the MikadoNode class.

In TyCO, the abstraction for a node in a network is implemented by a class
Site. Since Site cannot subclass any other class (it already subclasses TyCO’s
TyCOVirtualMachine class and Java does not allow multiple inheritance), we cre-

184 L. Bettini et al.

ate a wrapper class, TyCONode, that holds an instance of the TyCOVirtualMachine
class.

public class TyCONode extends MikadoNode implements ... {
Object virtualMachine;
TyCONode (String name, Object virtualMachine) {

super(name);
this.virtualMachine = virtualMachine;

}
public Object getImplementation() {

return this.virtualMachine;
}
...

}
To create a new node running a TyCO virtual machine and add it to a network of

running nodes one has to create a new instance of the class TyCONode supplying the
node’s name and the virtual machine running in it. To attach/detach the node to/from the
network we need only to call the superclass’ (MikadoNode) methods: connect() and
disconnect().

public class NodeManager {
...
void newNode(String name, Assemble assembly) {

TyCOVirtualMachine virtualMachine = new TyCOVirtualMachine(name, assembly);
TyCONode node = new TyCONode(name, virtualMachine);
node.run();
node.connect();

}
...

}
We assume the existence of a connect() wrapper in the TyCONode that skips

the NodeIdentifier argument and automatically connects the new TyCO node to
the NetworkServer that serves as the root of the flat network topology of the TyCO
network.

An additional, optional, step is the inclusion of a TopologySecurityManager,
which controls access to MikadoNode’s functionality. It allows an operation
to be blocked or allowed, based on any desired security policy. The default
TopologySecurityManager for TyCO would enforce rules such as: a node can only
connect to the NetworkServer (its parent) and that it cannot accept connections (since
the topology is flat).

The IMC infrastructure already contains a NetworkServer that handles the map-
pings between the node names and their physical location in a network. This enables a
straightforward implementation of the TyCO’s Name Server by using it as the virtual
root of the TyCO flat network topology and extending the class with functionality for
registering and type-checking top level exported channels.

A Software Framework for Rapid Prototyping of Run-Time Systems 185

3 Naming and Binding

The purpose of this part of the framework is to define a uniform way to designate and in-
terconnect the set of objects involved in the communication paths between computational
nodes. We shall call such a set of objects a binding.

Motivation

The fundamental concept to be provided by this sub-package is that of a referenceable
object. Such an object is an abstraction for the fundamental communication peers in pro-
cess calculi such as channels or definitions. A referenceable object is always associated
with a unique network-wide identifier. Each resource identifier is uniquely associated
with a naming context in a network.

A feature common to current mobile calculi implementations is the use of the ex-
port/bind programming pattern to make objects available in a network and to get an
access path for such objects. This pattern is so pervasive that the Naming and Bind-
ing sub-package provides a registry abstraction that, for a given managed name, should
be able to make it available to the network by registering it and to create an access
path towards the object designated by that name. Thus, the registry is responsible for
keeping the mappings between identifiers and referenceables for a given node in a
network.

The above considerations offer a generic and uniform view of bindings, clearly
separating object identification from object access.

Design

We now describe a minimal set of interfaces for dealing with naming and binding based
on the above requirements:

public interface UID {
public NamingContext getContext();
public String getName();
public String getEncoded();
public NodeIdentifier getNodeIdentifier();
public String toString();

}

public interface NamingContext {
public String getName();

}
The UID interface represents the generic notion of a network wide unique iden-

tifier used to designate some object relatively to a given naming context, such as a
channel in process calculi. Identifiers are implementation dependent. The interface con-
tains a reference to its naming context. The Naming Context interface represents a set
of Referenceable (see below) objects in a Mikado Network that is identified by a
string.

186 L. Bettini et al.

public interface Referenceable {
public NamingContext getContext();
public UID getUID();
public void handleData(ProxyRequest request);
public void marshall();
public void unmarshall();

}

The Referenceable interface must be implemented by any object in a Mikado
Network that is to be exported and bound during a computation. The handleData()
method is used to receive requests from object proxies (Proxy) elsewhere in the network.
The marshall() and unmarshall() methods can be used, respectively, to prepare a
reference for network dispatch and to restore a reference after traveling through the net-
work. These methods typically call a Marshaller implementation from the protocols
sub-package to perform some level of packing/unpacking (see Section 4).

public abstract class Proxy {
private UID uid;
protected Proxy(UID uid);
public UID getUID();
public abstract void dispatch(Serializable request);
public abstract void marshall();
public abstract void unmarshall();

}

public interface ProxyRequest {
public abstract NodeIdentifier getPeer();
public abstract UID getUID();
public abstract Serializable getRequest();

}

The Proxy interface describes the functionality associated with a proxy for a ref-
erenceable object. The method dispatch() handles communication by redirecting it
to the corresponding referenceable object. Methods marshall() and unmarshall()
have similar functions to the referenceable side. The interface ProxyRequest allows a
referenceable object to obtain basic topological and naming information about a proxy
sending data from another node and the data itself.

public interface Registry {
public void export(Referenceable ref);
public void unexport(Referenceable ref);
public Proxy bind(NodeIdentifier id, String name, NamingContext context);
public Referenceable getRef(UID uid);
public Referenceable [] getAllRefs();

}

Object access is provided for by the interface Registrywhich must be implemented
by any class that exports or binds objects in a Mikado Network. The interface includes
the export() method to create a new name in a given context and make it bindable
in a network. The unexport() method cancels an export operation by making an

A Software Framework for Rapid Prototyping of Run-Time Systems 187

identifier no longer valid within a naming context. In other words, the mapping identifier-
referenceable object designated by that identifier is broken. The bind() method returns
a local Proxy associated with a given Referenceable object at a node id, with a given
name and naming context context. This Proxy allows direct communication with the
proxy for the Referenceable object in the Mikado Network.

All the required communication between referenceable objects and their proxies is
provided via the protocols sub-package of the framework.

Examples

A default implementation of some of the Naming and Binding package inter-
faces (Proxy, ProxyRequest, NamingContext and Registry) is already pro-
vided in IMC (MikadoProxy, MikadoProxyRequest, MikadoNamingContext and
MikadoRegistry, respectively).

The fundamental step in implementing TyCO on the IMC framework is the realization
that TyCO’s referenceable objects are instances of the class Channel.Also, given the flat
topology of TyCO networks, the implementation requires only a single naming context
identified by the string "tyco".

In this approach, we make each exported TyCO channel in a running virtual machine
implement the Referenceable interface and allow other nodes in the network to commu-
nicate with it directly by using proxies through the Proxy interface. The most important
method in this implementation is handleData(). This method handles proxy requests
to the channel from proxies elsewhere in the TyCO network. The incoming requests,
messages or objects are either enqueued in the channel queue or reduced immediately
if an adequate message-object redex forms.

public class Channel extends ... implements Referenceable {
...
public void handleData(ProxyRequest request) {

// unpack the request and check whether it is an object or a message
Frame frame = unpack(request.getRequest());
// run code according to case
if(status == 0) { // channel is empty

enqueue(frame);
if (frame.isObject())

status++;
else

status−−;
} else if (status < 0) { //channel has messages

if (frame.isObject()) {
Frame message = dequeue();
reduce(frame, message);
status++;

} else {
enqueue(frame);
status−−;

}

188 L. Bettini et al.

} else if (status > 0) { // channel has objects
if (frame.isObject()) {

enqueue(frame);
status++;

} else {
Frame object = dequeue();
reduce(object, frame);
status−−;

}
}

}
...

}
TyCO represents channels in a distributed computation in two distinct formats re-

flecting their current position relative to their lexical bindings. A local channel to a node
is represented as a JVM heap reference. A remote channel is represented in a network
format containing information about the node (its name) it originated from and its local
reference there. When, say, a message is sent to a channel in a program running at some
node of a TyCO network, the internal representation of the channel is first checked to
see if the channel is local to the node or if it is a remote channel. If the channel is remote,
a bind operation is required to get a proxy to handle remote interaction. Thus, a TyCO
Virtual machine instruction to handle message delivery would look like this:

void sendMessage(Channel channel, Label label, Value[] args) {
if (channel.isLocal()) {

// code for local handling, similar to above code for handleData()
...

} else {
// get a proxy object for communication with the real channel
UID uid = channel.getUID();
NodeIdentifier nodeId = uid.getNodeIdentifier();
String name = uid.getName();
NamingContext context = uid.getContext();
Proxy proxy = getMikadoNode().getRegistry().bind(nodeId, name, context);
// pack message in a Serializable object and send it to the channel
SerializablePacket packet = new SerializablePacket(channel, label, args);
proxy.dispatch(packet);

}
}

Exporting and importing top-level channels in TyCO involves two operations in the
TyCO Virtual Machine that interacts with the NetworkServer. When we export one
channel from a node we make its access information available to other nodes in the
network. Such an operation might be implemented using the above abstractions as:

void export(Channel channel) {
getMikadoNode().getRegistry().export(channel);

}
The complementary operation in which we import a top-level channel from some

node in a TyCO network requires the name of the channel being requested and the node

A Software Framework for Rapid Prototyping of Run-Time Systems 189

it resides in. The operation simply requests a proxy for the remote channel based on the
name of the channel and of the node:

Proxy import(String node, String name) {
NodeIdentifier nodeId = getMikadoNode().resolve(node);
NamingContext context = new TycoNamingContext();
return getMikadoNode().getRegistry().bind(nodeId, name, context);

}

4 Communication Protocols

This part of the IMC framework intends to identify the primitives and the communication
strategies for logical and physical node connectivity. The general aim is to assist the
architect of a run-time system for a distributed process calculus in the implementation
of new communication protocols between computational nodes.

Motivation

Existing implementations [3] of some common distributed process calculi [6] are char-
acterized by a flurry of communication protocols and of programming languages. In first
approximation, the protocols can be split into two families: high-level protocols such as
Java RMI are well integrated with the Java Virtual Machine environment and take advan-
tage of the architectural independence provided by Java (SAM [32] implementation of
Safe Ambients [25]); protocols closer to hardware resources such as TCP/IP are acces-
sible, either directly in Java (X-Klaim/Klava [5]) or in other programming languages
allowing easier manipulation of system resources such as OCaml (Jcl [12] and Jo-
Caml [24]) or C (DiTyCO [26]). Marshalling strategies range from dedicated byte-code
structures (Jcl, JoCaml, DiTyCO) to Java serialization (SAM, X-Klaim/Klava).

Thus, a generic communication framework to build prototype implementations of
process calculi cannot restrain itself to a fixed set of interaction primitives or marshalling
strategies. Instead, a middleware like IMC should be flexible enough to support multiple
marshalling strategies and communication protocols. The framework should also aim at
minimality to introduce new communication protocol support with little effort, in any
case without need to re-implement a new communication library: either by realizing
specialized implementations of the framework interfaces, or by defining framework
increments which will complement the IMC core interfaces and libraries.

A number of minimal platforms for flexible communications have already been im-
plemented [10, 11, 15, 18, 20, 28] where objects interact transparently through remote
method invocations on well-defined interfaces. Their originality compared to CORBA-
like or Java RMI-based infrastructures is to provide a core framework for building dif-
ferent types of middleware using the notion of flexible bindings. Creating a new binding
should be understood as setting up access and communication paths between compo-
nents of a distributed system with a wide variety of semantics: mobile, persistent, with
QoS guarantees, etc. An adaptable communication framework should provide primitives
to define bindings with various semantics, and to combine them in flexible ways. With
simple architectural principles such as separating marshalling from protocol implemen-
tation, or threading from resource management, those middleware have shown how to

190 L. Bettini et al.

dynamically introduce new protocols or control the level of resource multiplexing. In
the IMC communication framework design, an important decision was to leverage the
previously described naming and binding framework for network protocols in order to
achieve adaptable forms of communication transparency needed when implementing a
specific process calculus. The communication framework enables the definition of cus-
tomized protocol stacks by a flexible composition of micro-protocols. In practice, the
implementation of a new process calculus will most likely use TCP/IP as lowest layer
of interface to the network. Thus, the IMC communication framework provides support
for TCP/IP bindings, but can be easily extended to other protocols.

The IMC communication framework is composed of two main sub-packages:

– Sub-package org.mikado.imc.protocols.apis contains the interfaces de-
scribing the main abstractions for communication, e.g. sessions, protocols, mar-
shallers, . . .

– Sub-package org.mikado.imc.protocols.libs contains the classes which im-
plement those interfaces and offer support for flexible TCP/IP bindings.

In what follows, we describe the main abstractions and interfaces of the IMC com-
munication framework. We then illustrate over a simple example – a small client/server
authentication protocol called “knock-knock” – how protocol and session objects can
be combined to implement new communication protocols taking advantage if IMC.

Design

The communication framework builds upon the IMC abstractions for naming and binding
such as identifiers, references, and naming contexts. Protocol-specific abstractions are
inspired from the x-kernel [17] and Jonathan [20] communication frameworks and are
represented by the interfaces below:

public interface Protocol {}

public interface ProtocolGraph {
public SessionIdentifier export(Session Low session);

}

public interface SessionIdentifier {
public Protocol getProtocol();
public Session High bind(Session Low session);

}

public interface Session High {
public void send(Marshaller message);

}

public interface Session Low {
public void send(UnMarshaller message, Session High session);

}
A protocol represents network protocols like TCP, IP, or GIOP, and provides a naming

context for a particular kind of interfaces called sessions. It manages names called session
identifiers to designate those interfaces.

A Software Framework for Rapid Prototyping of Run-Time Systems 191

The structure of a protocol stack is captured by a protocol graph. This directed acyclic
graph composed of protocol nodes describes the path to be followed by messages when
they are sent over the network, or received. A given session can be exported to inform the
communication layers that it is willing to accept messages: a call on the export method
at the root of a protocol graph will issue recursively the appropriate calls on each node
of its sub-graphs. A session identifier is then returned to designate the exported session.
To communicate with the exported session, a client just needs to call the bind method
on the returned session identifier, which will provide a surrogate the client can use to
send messages to the exported server session.

A session is an abstract representation of a communication channel. A session object
is dynamically created by a protocol and lets messages be sent and received through
the communication channel it stands for using that protocol. It has higher and lower
interfaces to send messages down and up a protocol stack which may be viewed as a
stack of sessions.

Exported session objects are designated using session identifiers. Their internal struc-
ture is protocol-specific. For instance, a TCP/IP session identifier encapsulates a host
name and port number. Session identifiers are created when exporting a server-side
session and then transmitted over the network. On the client side, they allow to estab-
lish communication channels by invoking the bind operation, with an optional session
parameter to receive messages sent by the remote server-side session.

Sessions and Connections. Messages can navigate through a protocol stack using the
session interfaces (Session High and Session Low) with a single method to perform
the message sending operation. A Session High object is used to send messages down
to the network. It will usually be a surrogate for a Session Low type of session, which
has been exported to a Protocol instance and is designated by a SessionIdentifier
interface. A Session High instance may be obtained by invoking the bind operation
on a session identifier representing a Session Low interface: it is thus a surrogate, or
a proxy, for that interface. A Session Low object is used to forward messages coming
from the network to their actual recipient. Session Low is also the type of interfaces
exported to protocols, and designated by session identifiers. The additional parameter in
the send method represents the sender, and may be used to send a reply, if necessary.

Each session contains a lower-level abstraction of a communication channel called a
connection. It typically encapsulates a regular socket, and provides operations to read and
write to the socket. Client-side or server-side connections may be built on demand using
connection factories, for instance on an incoming connection request from a client.
A connection manager keeps track of idle and active connections, and delegates the
creation of new connections to a connection factory.

To facilitate concurrent programming within sessions, the framework also offers basic
primitives for activity management and their scheduling according to various criteria
such as priorities, deadlines, etc.

Marshalling. Marshallers and unmarshallers are used as high-level and encoding-
independent representations of messages that are about to be sent or received. The
Marshaller interface is described below:

192 L. Bettini et al.

STDIN

TcpIpProtocol.CltSession

KnockKnockClientSession

TcpIpProtocol

KnockKnockClientSession.send() CltSession.send()

TcpIpProtocol.send()
TcpIpProtocol TcpIpProtocol.SrvSession

KnockKnockServerSession

TcpIpProtocol.send()

NETWORK

SrvSession.send()

KnockKnockServerSession.send()

KnockKnockProtocol

KnockKnockProtocol.send()

Fig. 1. Session and Protocol Objects in the “Knock-Knock” Protocol

public void writeBoolean(boolean b);
public void writeChar(char c);
...
public void writeReference(Object obj);
public void writeCode(MigratingCode code);
public boolean isLittleEndian();
public void close();

}
The UnMarshaller interface is similar but with read instead of write operations.

The communication framework allows to customize the marshalling and unmarshalling
of messages, by including interfaces for the management of chunks, or fragments of byte
arrays which are chained together to form messages. The use of chunks helps avoiding
unnecessary copying of memory blocks when messages move up and down a protocol
stack. In particular, writeCode and readCode are used to implement code mobility and
rely on the sub-package mobility described in Section 5.

Implementation. The IMC communication framework provides TCP/IP-level binding
management mechanisms: the main classes implement the TCP/IP protocol, standard
marshallers, TCP/IP connection managers, as well as standard chunk managers, sched-
ulers, and distributed naming contexts [22].

An Example

We now show how to use the IMC communication framework to implement new net-
working protocols. Consider the following simple protocol called “knock-knock”, for
authentication between a client C and a server S:
1 Connect Request C → S: Connect
2 Connect Reply S→ C: Knock-knock
3 Authentication Request C → S: Who’s there?
4 Authentication Reply S→ C: Challenge e.g. Will
5 Confirmation Request C → S: Challenge who? e.g. Will who?

6 Confirmation Reply S→ C: Response e.g.

[
Will you let me in?
It’s cold out here!

This protocol can be easily implemented using the IMC communication framework
over TCP/IP bindings by a set of session and protocol objects shown in Figure 1. The

A Software Framework for Rapid Prototyping of Run-Time Systems 193

client first asks the user for the server host name and TCP port number. The TCP/IP stack
is initialized by creating a new instance of the TcpIpProtocol class and a new client
session identifier with the given parameters. The communication channel is established
by a bind call on this identifier. The returned Session High object can later be used
to send messages over the network: the Connect message is first sent. The client then
waits for replies from the server. The “knock-knock” client is given by:

public class KnockKnockClient {
public static void main(String[] args) {

// Ask the user for the hostname and port number to connect to
...
// Instantiate TCP/IP protocol stack
TcpIpProtocol protocol = new TcpIpProtocol(...);
IpSessionIdentifier id = protocol.newSessionIdentifier(hostname, port);

// Bind to remote TCP/IP session
Session High session = id.bind(new KnockKnockClientSession(System.in));

// Send "CONNECT" message
Marshaller connectMsg = IMCMarshallerFactory.newMarshaller();
connectMsg.writeString("Connect"); session.send(connectMsg);

// Wait for replies from the server
...
}

}
The top-level session object in the Knock-Knock/TCP/IP stack is a KnockKnock-

ClientSession which directly reads data from standard input. When a message is
received from the network, the “knock-knock” session send method is called. The
message content is then displayed on the standard output device. Any message typed
on the standard input device will be forwarded to the TCP/IP session which will send it
over the network:

class KnockKnockClientSession implements Session Low {
...
public void send(UnMarshaller message, Session High tcp session) {

// Read message from Knock−Knock server
String fromServerMsg = message.readString();
System.out.println("KKServer: " + fromServerMsg);

// Get user input
System.out.print("KKClient?"); fromUserMsg = System.in.readLine();

// Send user input to Knock−Knock server
Marshaller toServerMsg = IMCMarshallerFactory.newMarshaller();
toServerMsg.writeString(fromUserMsg); tcp session.send(toServerMsg);
}

}

194 L. Bettini et al.

The “knock-knock” server begins by creating a protocol graph composed of two
nodes, instances of the TcpIpProtocol and KnockKnockProtocol classes. It then
waits for client invocations:

public class KnockKnockServer {
public static void main(String[] args) {

...
// Create Knock−Knock/TCP/IP protocol stack
TcpIpProtocol protocol = new TcpIpProtocol(...);
protocol.newProtocolGraph().export(new KnockKnockProtocol());

// Wait for invocations
...
}
}
A “knock-knock” protocol object maintains a set of “knock-knock” sessions. Each

session is associated with an underlying TCP/IP session in a hashtable, in order to
record the path messages should follow in the protocol stack. When exporting the
“knock-knock” protocol, a TCP/IP server-side session is created containing a new server
socket to listen for connection requests from clients. When a client connects, the TCP/IP
session reads all messages from the network and forwards them to the higher-level
KnockKnockProtocol instance: the send method of that class is called, passing as a
parameter the TCP/IP server session for sending back replies to the network.A new entry
in the hashtable is created, associating the TCP/IP session with a new “knock-knock”
session where message processing will be performed. Control is then transferred to the
send method of the “knock-knock” session:

class KnockKnockProtocol implements Session Low {

Hashtable kk sessions; // A pool of session objects
...
// Send back reply to the message coming from the network
public void send(UnMarshaller message, Session High tcp session) {

// Determine the TCP/IP session to use
KnockKnockServerSession kk session = null;
synchronized (this) {
kk session = (KnockKnockServerSession) kk sessions.get(tcp session);
if (kk session == null) {

kk session = new KnockKnockServerSession(this);
kk sessions.put(tcp session, kk session);

}
}
// Send the reply message on the network
kk session.send(message, tcp session);

}
}

A Software Framework for Rapid Prototyping of Run-Time Systems 195

The “knock-knock” session simply determines the correct message to send back
to the TCP/IP session, based on the message received from the client, and follow-
ing the “knock-knock” protocol. The TCP/IP session then sends the message over the
network:

class KnockKnockServerSession {
...
int state = WAITING; // State of the protocol

// Protocol messages : challenges and responses
static String challenges[] = { "Will", ... };
static String responses[] = { "Will you let me in, it’s cold out here!", ... };
int ChallengeNumber;

// Perform ‘‘knock−knock’’ protocol message processing
public void send(UnMarshaller message, Session High tcp session) {

String fromClientMsg = message.readString();
switch(state) {

case WAITING:
if (fromClientMsg.equals("Connect")) {

toClientMsg = "Knock Knock!"; state = SENT KNOCK KNOCK;
} else state = ERROR;
break;

case SENT KNOCK KNOCK:
if (fromClientMsg.equals("Who’s there?")) {

challengerNumber = random(MAX CHALLENGES);
toClientMsg = challenges[challengeNumber]; state = SENT CHALLENGE;

} else state = ERROR;
break;

case SENT CHALLENGE:
if (fromClientMsg.equals(challenges[challengeNumber] + "who?")) {

toClientMsg = responses[challengeNumber]; state = WAITING;
} else state = ERROR;
break;

case ERROR:
tcp session.close(); state = WAITING;
break;

}

// Send reply message on the network
if (state == WAITING) {
Marshaller reply = IMCMarshallerFactory.newMarshaller();
reply.writeString(toClientMsg); tcp session.send(reply);

}
}
}

196 L. Bettini et al.

5 Code Mobility Management

The purpose of this part of the framework is to provide the basic functionali-
ties for code mobility. All these functionalities are implemented in the sub-package
org.mikado.imc.mobility. This package defines the basic abstractions for code mar-
shalling and unmarshalling and also implements the classes for handling Java byte-code
mobility transparently.

Motivations

The base classes and the interfaces of this package abstract away from the low level details
of the code that migrates. By redefining specific classes of the package, the framework
can be adapted to deal with different code mobility frameworks. Nowadays, most of
these frameworks are implemented in Java thanks to its great means and features that
help in building mobile code systems. In many of these systems, the code that is actually
exchanged among sites is Java byte-code itself. For this reason, the concrete classes of
the framework deal with Java byte-code mobility, and provide functionalities that can
be already used, without interventions, to build the code mobility part of a Java-based
code mobility framework.

When code (e.g., a process or an object) is moved to a remote computer, its classes
may be unknown at the destination site. It might then be necessary to make such code
available for execution at remote hosts; this can be done basically in two different ways:

– automatic approach: the classes needed by the moved process are collected and
delivered together with the process;

– on-demand approach: the class needed by the remote computer that received a
process for execution is requested to the server that did send the process.

We follow the automatic approach because it complies better with the mobile agent
paradigm: when migrating, an agent takes with it all the information that it may need
for later executions. This approach respects the main aim of this sub-package, i.e., it
makes the code migration details completely transparent to the programmer, so that he
will not have to worry about classes movement. Our choice has also the advantage of
simplifying the handling of disconnected operations [29]: the agent owner does not have
to stay connected after sending off an agent and can connect later just to check whether
his agent has terminated. This may not be possible with the on-demand approach: the
server that sent the process must always be on-line in order to provide the classes needed
by remote hosts. The drawback of this approach is that code that may never be used by
the mobile agent or that is already provided by the remote site is also shipped; for this
reason we also enable the programmer to choose whether this automatic code collection
and dispatching should be enabled.

With the automatic approach, an object will be sent along with its class binary code,
and with the class code of all the objects it uses. Obviously, only the code of user defined
classes has to be sent, as the other code (e.g. Java class libraries and the classes of the
Mikado framework) has to be common to every application. This guarantees that classes
belonging to Java standard class libraries (and to the IMC package) are not loaded from
other sources (especially, the network); this would be very dangerous, since, in general,
such classes have many more access privileges with respect to other classes.

A Software Framework for Rapid Prototyping of Run-Time Systems 197

Design

The package defines the empty interface MigratingCode that must be implemented by
the classes representing a code that has to be exchanged among distributed site. This
code is intended to be transmitted in a MigratingPacket, stored in the shape of a byte
array:

public class MigratingPacket implements java.io.Serializable {
public MigratingPacket(byte[] b) {...}
public byte[] getObjectBytes() {...}

}
How a MigratingCode object is stored in and retrieved from a MigratingPacket

is taken care of by the these two interfaces:

public interface MigratingCodeMarshaller {
MigratingPacket marshal(MigratingCode code) throws IOException;

}

public interface MigratingCodeUnMarshaller {
MigratingCode unmarshal(MigratingPacket p)

throws InstantiationException, IllegalAccessException,
ClassNotFoundException, IOException;

}
These marshaller objects are used also by the classes of the protocols package

(see Section 4). In particular the Marshaller and UnMarshaller in the package
protocols rely on instances of MigratingCodeMarshaller and MigratingCode-
UnMarshaller, respectively, to deal with MigratingPackages.

Starting from these interfaces, the package mobility provides concrete classes that
automatically deals with migration of Java objects together with their byte-code, and
for transparently deserializing such objects by dynamically loading their transmitted
byte-code. These classes are described in the following.

Java Byte-Code Mobility. All the nodes that are willing to accept code from remote
sites must have a custom class loader: a NodeClassLoader supplied by this Mikado
sub-package. When a remote object or a migrating process is received from the network,
before using it, the node must add the class binary data (received along with the object)
to its class loader’s table. Then, during the execution, whenever a class code is needed,
if the class loader does not find the code in the local packages, then it can find it in its
own local table of class binary data. The most important methods that concern a node
willing to accept code from remote sites are addClassBytes to update the loader’s class
table, as said above, and forceLoadClass to bootstrap the class loader mechanism, as
explained later:

public class NodeClassLoader extends java.lang.ClassLoader {
public void addClassBytes(String className, byte[] classBytes) {...}
public Class forceLoadClass(String className) {...}

}
The names of user defined classes can be retrieved by means of class introspection

(Java Reflection API). Just before dispatching a process to a remote site, a recursive

198 L. Bettini et al.

procedure is called for collecting all classes that are used by the process when declaring:
data members, objects returned by or passed to a method/constructor, exceptions thrown
by methods, inner classes, the interfaces implemented by its class, the base class of its
class.

We define a base class for all objects/process that can migrate to a remote site,
JavaMigratingCode, implementing the above mentioned interface, MigratingCode,
that provides all the procedures for collecting the Java classes that the migrating ob-
ject has to bring to the remote site. Unfortunately, Java only provides single inheri-
tance, thus providing a base class might restrict its usability. The problem arises when
dealing with threads: the interface Runnable in the standard Java class library could
solve the above issue but requires additional programming. For this reason we make
JavaMigratingCode a subclass of java.lang.Thread (with an empty run method),
so that JavaMigratingCode can be extended easily by classes that are meant to be
threads. Thus, the most relevant methods for the programmer are the following ones:

public class JavaMigratingCode extends Thread implements MigratingCode {
public void run() { /∗ empty ∗/ }
public JavaMigratingPacket make packet() throws IOException {...}

}

The programmer will redefine run if its class is intended to represent a thread.
The method make_packet will be used directly by the other classes of the framework
or, possibly, directly by the programmer, to build a packet containing the serialized
(marshalled) version of the object that has to migrate together with all its needed byte
code. Thus, this method will actually take care of all the code collection operations.

Once these class names are collected, their byte code is gathered in the first
server from which the object was sent, and packed along with the object in a
JavaMigratingPacket object (a subclass of MigratingPacket storing the byte-code
of all the classes used by the migrating object, besides the serialized object itself). Notice
that the migrating object (namely, its variables) is written in an array of bytes (inherited
by MigratingPacket) and not in a field of type JavaMigratingCode. This is neces-
sary because otherwise, when the packet is received at the remote site and read from the
stream, the remote object would be deserialized and an error would be risen when any
of its specific classes is needed (indeed, the class is in the packet but has not yet been
read). Instead, by using our representation, we have that, first, the byte code of process
classes is read from the packet and stored in the class loader table of the receiving node;
then, the object is read from the byte array; when its classes are needed, the class loader
finds them in its own table. Thus, when a node receives a process, after filling in the
class loader’s table, it can simply deserialize the process, without any need of explicit
instantiation. The point here is that classes are always stored in the class loader’s table,
but they are linked (i.e., actually loaded) on-demand.

The byte code of the classes used by a migrating process or object is retrieved by the
method getClassBytes of the class loader: at the server from where the object is first
sent, the byte code is retrieved from the local file system, but when a process at a remote
site has to be sent to another remote site, the byte code for its classes is obtained from
the class loader’s table of the node.

A Software Framework for Rapid Prototyping of Run-Time Systems 199

Finally, two classes, implementing the above mentioned interfaces Migrating-
CodeMarshaller and MigratingCodeUnMarshaller, will take care of actually mar-
shalling and unmarshalling a JavaMigratingPacket containing a migrating object
and its code:

public class JavaByteCodeMarshaller implements MigratingCodeMarshaller {...}

public class JavaByteCodeUnMarshaller implements MigratingCodeUnMarshaller {...}
In particular, the first one will basically rely on the method make_packet of

JavaMigratingCode, while the second one will rely on NodeClassLoader to load
the classes stored in the JavaMigratingPacket and then on Java serialization to actu-
ally deserialize the migrating code contained in the packet.

Now let us examine the code that recovers the object from a JavaMigratingPacket,
in the JavaByteCodeUnMarshaller. As previously hinted, a site that is willing to
receive a remote object must use a NodeClassLoader that will take care of loading
the classes received with a JavaMigratingPacket. The Java class loading strategy
works as follows: whenever a class A is needed during the execution of a program, if
it is not already loaded, then the class loader that loaded the class that needs A, say
B, is required to load the class A. This usually takes place in the background, and the
only class loader involved is the system class loader. In our case, we have to make our
NodeClassLoader load the classes of the packet of the migrating object. For this reason,
we have to make sure that the received object (contained in the MigratingPacket) is
actually retrieved by a local object whose class is loaded by the NodeClassLoader.
Since this class is a local class, i.e., a class present in the local class library, we have to
force it to be loaded by the NodeClassLoader and not by the system class loader. In
particular, the sub-package mobility provides an interface, MigratingCodeRecover
and a class, MigratingCodeRecoverImpl, for recovering objects and classes from a
MigratingPacket. The steps to perform are: load the MigratingCodeRecoverImpl
class through the class loader (by forcing its loading so to avoid it is loaded by the system
class loader) and recover the received packet through the MigratingCodeRecoverImpl
instance:

NodeClassLoader classloader = class loader factory.createNodeClassLoader();
String recover name =
"org.mikado.imc.mobility.MigratingCodeRecoverImpl";

MigratingCodeRecover recover =
(MigratingCodeRecover) (classloader.forceLoadClass(recover name, true).newInstance());

Notice that recover is declared as MigratingCodeRecover but its actual
class is MigratingCodeRecoverImpl (which is a class implementing the interface
MigratingCodeRecover). Indeed, the following code would generate a ClassCast-
Exception:

MigratingCodeRecoverImpl recover =
(MigratingCodeRecoverImpl) (classloader.forceLoadClass(recover name, true).newInstance());

200 L. Bettini et al.

since Java considers two classes loaded with different class loader as incompatible. In
the wrong code snippet above, for instance, the class MigratingCodeRecoverImpl of
the variable recover would be loaded through the system class loader, and it would be
assigned an object of the same class MigratingCodeRecoverImpl, but loaded with
NodeClassLoader. This is the reason why we have to assign the instance loaded by
NodeClassLoader to a variable declared with a superclass of the actually loaded class.

Once this MigratingCodeRecover object is loaded through our NodeClass-
Loader, we can deserialize the received object with these two simple instructions:

recover.set packet(pack);
MigratingCode code = recover.recover();

The method recover will return the object stored in the MigratingPacket and the
classes needed by such object, stored in the packet, will be automatically loaded by the
NodeClassLoader. We would like to point out that not all the classes of the received
object are necessarily loaded immediately; however, each time such object needs a class
to be loaded, this request will be handled transparently by the NodeClassLoader. We
observe that once the object is recovered from a packet, it can be used to create another
packet to be sent to another site.

By default, the JavaByteCodeUnMarshaller uses a brand new class loader
(through an abstract factory) for each MigratingPacket. Thus, each migrating ob-
ject will be incompatible with other migrating objects, since each one of them
is loaded through a different classloader. This name space separation provides a
sort of isolation that helps avoiding that migrating objects coming from differ-
ent sites do not interfere with each other. If this is not the desired behavior, the
JavaByteCodeUnMarshaller can be initialized with a specific NodeClassLoader
instance that will always be used to load every migrating object. Alternatively, the user
can provide the JavaByteCodeUnMarshaller with a customized abstract factory in
order to force it to use a customized NodeClassLoader for each migrating object.

Examples

Let us now show a small tutorial on how to use this sub-package for Java byte-code
migrating code. First of all the classes of objects we want to migrate must be subclasses
of JavaMigratingCode:

public class MyCode extends JavaMigratingCode {
MyVar v = new MyVar();

public MyRetType getFoo(MyPar p) {...}
...
}

Now an object of this class (or of one of its possible subclasses) can be sent to a
remote site by creating a MigratingPacket, through a JavaByteCodeMarshaller
described above. Once such a packet is created, it can be directly written into an
ObjectOutputStream that, in turn, is connected, for instance, to a network output
stream:

A Software Framework for Rapid Prototyping of Run-Time Systems 201

public class Sender {
...
void sendCode(OutputStream os) throws Exception {

MigratingCodeMarshaller marshaller = new JavaByteCodeMarshaller();
MigratingCode code = new MyCode();
MigratingPacket pack = marshaller.marshal(code);
ObjectOutputStream obj os = new ObjectOutputStream(os);
obj os.writeObject(pack);
obj os.flush();

}
}

Let us observe that the act of creating a MigratingPacket automatically collects
all the classes that MyCode uses, apart from creating an array of bytes representing the
state of the object to migrate. Thus, the classes MyVar, MyRetType and MyPar are stored
in the packet as well.

The site that receives a migrating object will basically perform the complementary
operations: read a MigratingPacket from a stream (e.g., from the network) and use a
JavaByteCodeUnMarshaller to retrieve the object from the received packet (all the
operations for loading the classes will be transparent to the programmer):

public class Receiver {
...
JavaMigratingCode receiveCode(InputStream is) throws Exception {
MigratingCodeUnMarshaller unmarshaller = new JavaByteCodeUnMarshaller();
ObjectInputStream obj is = new ObjectInputStream(ss);
MigratingPacket pack = (MigratingPacket) obj is.readObject();
return (JavaMigratingCode) unmarshaller.unmarshal(pack);
}
}

Notice that the object retrieved from the packet is of type JavaMigratingCode, thus
only the methods defined in that class can be used (e.g., the method start, inherited
by Thread). Moreover a cast to its actual class (that in this example is MyCode) is not
possible because that class is unknown in the receiving site and, even if it was known such
cast would make the system class loader try to load the class MyCode; either the system
class loader fails to load the class or, however, the two instances would be incompatible
as explained above.

This may seem a strong limitation, but the applications that exchange code can agree
on a richer interface or base class for the migrating code, say MyMigratingProcess,
with other methods, say m and n; such class must be present in all the sites where these
applications are running so that it can be loaded by the system class loader. For this
reason, the class MyMigratingProcessmust not be inserted in the MigratingPacket.
The class JavaMigratingCode provides a method, setExcludeClasses that allows
to specify which classes must not be inserted in the packet1. Thus, the code of the sender
shown above should be changed as follows (it delivers a MyProcess object, where

1 We remind that the mobility sub-package already excludes all the Java system classes and the
classes of the IMC package itself.

202 L. Bettini et al.

MyProcess inherits from the common base class MyMigratingProcess that in turns
derives from JavaMigratingCode):

public class Sender {
...
void sendCode(OutputStream os) throws Exception {

JavaMigratingCode code = new MyProcess();
code.setExcludeClasses("mypackage.MyMigratingProcess");
MigratingPacket pack = code.make packet();
ObjectOutputStream obj os = new ObjectOutputStream(os);
obj os.writeObject(pack);
obj os.flush();

}
}

The receiving code can then assign the retrieved object to a MyMigratingProcess
instance and then use the richer interface of MyMigratingProcess:

MyMigratingProcess code = (MyMigratingProcess) unmarshaller.unmarshal();
code.m();
code.n();

An alternative to setExcludeClasses is the method addExcludePackage that
allows to exclude a whole package (or several packages) from the set of classes that are
delivered together with a migrating object. For instance, the call tosetExcludeClasses
above could be replaced by the following statement:

code.addExcludePackage("mypackage.");

This allows to enforce that the whole excluded package is available on all the sites
where the migrating code is dispatched to.

When extending JavaMigratingCode, there is an important detail to know in order
to avoid run-time errors that would take place at remote sites and would be very hard
to discover: Java Reflection API is unable to inspect local variables of methods. This
implies that if a process uses a class only to declare a variable in a method, this class
will not be collected and thus, when the process executes that method on a remote site, a
ClassNotFoundExceptionmay be thrown. This limitation is due to the specific imple-
mentation of Java Reflection API, but it can be easily dealt with, once the programmer
is aware of the problem.

6 Implementing Dπ with IMC

To evaluate applicability of the components provided by IMC a small framework, called
JDπ, has been developed. This framework provides the runtime environment for ex-
ecuting programs developed using a Dπ paradigm. The implementation schema is the
same as the one adopted for developing Klava [5] and X-Klaim [2, 4]: like Klava is the
runtime for X-Klaim so JDπ will be the runtime for Dπ. In the next future, a compiler
will be developed to transform Dπ code into Java code that relies on JDπ.

A Software Framework for Rapid Prototyping of Run-Time Systems 203

Fig. 2. Jdpi class diagrams

Design

Dπ, introduced by Hennessy and Riely [16], is a locality-based extension of the π-
calculus [27] that requires processes to be located at nodes. More precisely the top-level
consists of a parallel composition of nodes with running processes. The language is also
enriched with a go primitive that permits processes to migrate to different nodes.

Analyzing the Dπ paradigm, one can single out three main concepts: Nodes, Pro-
cesses and Channels. A Dπ program consists of a set of nodes. Each node, which is
identified by a locality, contains processes running in parallel. Processes interact with
each other, locally, by means of asynchronous communication performed via channels.
A process can change its execution environment (the node where it is running) by per-
forming a go l action: the execution is suspended, the process migrates at the node
named l and there it restarts its computation. We assume that each host in the network
may contain more Dπ nodes that are executed within a common environment called
Site.

The basic Dπ ingredients are implemented by using the following classes:

– JdpiSite, that implements a container for nodes running on a host
– JdpiNode, that implements Dπ nodes
– JdpiAgent, that implements Dπ processes

Classes and Interfaces

The UML class diagram of JDπ is presented in Figure 2. In the rest of this section, we
describe the classes in the diagram.

204 L. Bettini et al.

JdpiSite. JdpiSite, which extends org.mikado.imc.topology.MikadoNode
class, is implemented using the pattern singleton. This means that only one instance
of JdpiSite can be created. A reference to this instance can be obtained using the
method getInstance(). JdpiSite also provides the method init() that is invoked
to initialize the site. Finally a new node can be created using the method getNewNode().
JdpiSite is also responsible for providing naming services for running nodes. This is
obtained at no cost, since all naming capabilities are inherited directly from MikadoNode.

JdpiNode. JdpiNode, implements a Dπ node, and each instance of it runs under the
control of a JdpiSite. Since processes, in order to move across the network, need
to refer remotely to nodes, JdpiNode implements Referenceable. Using this ap-
proach, a process does not refer directly to a node, but it uses a JdpiLocality. In the
present implementation JdpiLocality is just an abstraction for a host name and port.
This class will extend org.mikado.imc.naming.Proxy (the class used to refer to re-
mote Referenceable objects) in next development step. The class provides the method
addAgent to start a new Dπ process on it. Note that the only mechanism for interacting
with a process running at a remote node is to spawn another process to be evaluated
remotely. This is due using the method SpawnRequest(), that spawn a process to be
evaluated remotely. JdpiNode is also responsible for the channel management. Meth-
ods getNewChannel(), Send() and Receive() are used, respectively to create a new
channel, to send an object over a channel and to receive an object from a channel.

JdpiAgent. JdpiAgent represents a (mobile) Dπ process. For this reason JdpiAgent
extends JavaMigratingCode, which is defined in org.mikado.imc.mobility. The
infrastructure defined in the IMC framework allow the instances of JdpiAgent to mi-
grate from a JdpiNode to another. An instance of the JdpiAgent class does nothing
by itself, acting like the nil process. Programmers need to extend it in order to imple-
ment other Dπ processes. The process behavior is thus defined overriding the method
execute. A JdpiAgent provides a private attribute, hostNode, that represents the host-
ing node. This can be used to invoke the operations over local channels, as described
earlier. This attribute is set when a JdpiAgent constructor is invoked, and then only
the Runtime should modify it. A JdpiAgent can also send itself to a remote node
by invoking the SpawnRequest method on the hosting node. Being an extension of
JavaMigratingCode, JdpiAgent extends also the Thread class. So a JdpiAgent is
executed like a Java Thread, by calling the method start. Note that you can’t override
the run method of the Thread class. To assure that no JdpiAgent should run with a
null hostNode, the run method has been declared as final and when it is called, if the
hostNode is defined, it calls the execute method, otherwise it returns.

7 Conclusions

We have presented a Java package IMC that aims at providing a framework for fast
prototyping distributed applications with code mobility. It aims at providing support
to those building run-time systems (or virtual machines) for mobile code languages
and calculi. We chose Java as the implementation platform due to its well established

A Software Framework for Rapid Prototyping of Run-Time Systems 205

role in the development of this kind of software. Indeed, Java provides many useful
features that are helpful in building network applications and in dynamically loading
code from different sources (e.g., the network itself). However, these mechanisms still
require a big programming effort, and, in this respect, they can be thought of as “low-
level” mechanisms. Because of this, many existing Java based distributed systems (see,
e.g., [1, 7, 8, 23, 30, 31] and the references therein) tend to implement from scratch many
components that are typical and recurrent in distributed and mobile applications.

For this reason, we decided to single out the most recurrent entities of this type of
applications and pack them together in a Java framework, where the architecture of dis-
tributed and mobile applications is addressed by the framework itself. The programmer
can then concentrate on those parts that are really specific of his system, while relying on
the framework for the recurrent standard mechanisms (node topology, communication
and mobility of code). This should make the development of prototype implementations
faster and should relieve the programmers from dealing with low level details. Of course,
if specific applications require a specific functionality that is not in the framework (e.g., a
customized communication protocol built on top of TCP/IP, or a more sophisticated mo-
bile code management), the programmer can still customize the behaviors that concern
these mechanisms in the framework.

We experimented on this matter in two respects:

– In the prototype implementation of JDπ (Section 6) we used the IMC package as
it is without resorting to any customization;

– We re-engineered the implementations of our mobile code systems, TyCO and
Klava, using the IMC package. At this stage, we had to modify/extend only spe-
cific parts of the framework (e.g., the mobility code management for TyCO and the
communication protocol for Klava).

In both cases, we managed to concentrate our programming efforts on the main
features and mechanisms of the specific distributed mobile system, and, for the rest, we
relied completely on the architecture and the functionalities of the IMC framework.

Apart from the above, the Communication Protocols package was used to define
customized protocol stacks by composing micro-protocols in a flexible manner. In par-
ticular, this experiment showed how new protocols can be introduced with IMC, by
making evident the protocol and session objects involved, and by describing the path
followed by messages within a protocol stack [21].

For the rest of the project we shall, on the one hand use the framework to implement
richer languages for mobility and on the other hand we shall enrich the components to
deal with security issues.

Acknowledgements. We are greatly indebted to Michele Loreti for discussions on the
architecture of the framework and, especially, for suggestions about the implementations
of JDπ.

References

1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-aware Mobile
Programs. In Vitek and Tschudin [35], pages 111–130.

206 L. Bettini et al.

2. L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming & their
Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003. Available at
http://music.dsi.unifi.it.

3. L. Bettini, M. Boreale, R. De Nicola, M. Lacoste, andV.Vasconcelos. Analysis of Distribution
Structures: State of the Art. MIKADO Global Computing Project Deliverable D3.1.1, 2002.

4. L. Bettini, R. De Nicola, and R. Pugliese. X-Klaim and Klava: Programming Mobile Code.
In M. Lenisa and M. Miculan, editors, TOSCA 2001, volume 62 of ENTCS. Elsevier, 2001.

5. L. Bettini, R. De Nicola, and R. Pugliese. Klava: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

6. G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of Distribution and Mobility:
State of the Art. MIKADO Global Computing Project Deliverable D1.1.1, 2002.

7. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent Coor-
dination. In K. Rothermel and F. Hohl, editors, Proc. of the 2nd Int. Workshop on Mobile
Agents, volume 1477 of LNCS, pages 237–248. Springer-Verlag, 1998.

8. P. Ciancarini and D. Rossi. Jada - Coordination and Communication for Java Agents. In Vitek
and Tschudin [35], pages 213–228.

9. G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing Mobile Code Languages. In Vitek
and Tschudin [35].

10. B. Dumant, F. Horn, F. Dang Tran, and J.-B. Stefani. Jonathan: an Open Distributed Processing
Environment in Java. In Proceedings MIDDLEWARE’98, 1998.

11. ExoLab Group. The OpenORB project, 2002. Software available for download at
http://openorb.exolab.org/.

12. C. Fournet and L. Maranget. The Join-Calculus Language, 1997. Software and documentation
available from http://join.inria.fr/.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

14. C. Harrison, D. Chess, and A. Kershenbaum. Mobile agents: Are they a good idea? Research
Report 19887, IBM Research Division, 1994.

15. R. Hayton, A. Herbert, and D. Donaldson. Flexinet: a Flexible Component Oriented Middle-
ware System. In Proceedings ACM SIGOPS European Workshop, 1998.

16. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In U. Nest-
mann and B. C. Pierce, editors, HLCL ’98: High-Level Concurrent Languages (Nice, France,
September 12, 1998), volume 16.3, pages 3–17. Elsevier Science Publishers, 1998.

17. N. Huntchinson and L. Peterson. The x-kernel: an Architecture for Implementing Network
Protocols. IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

18. R. Klefstad, D. Schmidt, and C. O’Ryan. The Design of a Real-time CORBA ORB using
Real-time Java. In Proceedings ISORC’02, 2002.

19. F. Knabe. An overview of mobile agent programming. In Proceedings of the Fifth LOMAPS
workshop on Analysis and Verification of Multiple - Agent Languages, number 1192 in LNCS.
Springer-Verlag, 1996.

20. S. Krakowiak. The Jonathan Tutorial: Overview, Binding, Communication, Configuration
and Resource Frameworks. ObjectWeb Consortium, 2002. Available electronically at
http://www.objectweb.org/jonathan/doc/tutorial/index.html.

21. M. Lacoste. Building Reliable Distributed Infrastructures Revisited: a Case Study. In Inter-
national DOA Workshop on Foundations of Middleware Technologies (WFoMT’02), 2002.

22. M. Lacoste. IMC: Flexible Communication Support for Implementing Mobile Process Cal-
culi. Technical report, France Telecom R&D, 2003.

23. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

24. F. Le Fessant. The JoCaml System Prototype, 1998. Software and documentation available
from http://join.inria.fr/jocaml.

A Software Framework for Rapid Prototyping of Run-Time Systems 207

25. F. Levi and D. Sangiorgi. Controlling Interference inAmbients. In Proc. 27th ACM Symposium
on Principles of Programming Languages (POPL’00), pages 352–364. ACM Press, 2000.

26. L. Lopes. On the Design and Implementation of a Virtual Machine for Process Calculi. PhD
thesis, University of Porto, 1999.

27. R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II. Information
and Computation, 100(1):1–40, 41–77, 1992.

28. C. O’Ryan, F. Kuhns, D. Schmidt, O. Othman, and J. Parsons. The Design and Performance of
a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware.
In Proceedings MIDDLEWARE’00, 2000.

29. A. Park and P. Reichl. Personal Disconnected Operations with Mobile Agents. In Proc. of
3rd Workshop on Personal Wireless Communications, PWC’98, 1998.

30. H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents. In
K. Rothermel and R. Popescu-Zeletin, editors, Proc. of the 1st International Workshop on
Mobile Agents (MA ’97), LNCS, pages 50–61. Springer-Verlag, 1997.

31. G. Picco, A. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In D. Garlan, editor,
Proc. of the 21st Int. Conference on Software Engineering (ICSE’99), pages 368–377. ACM
Press, 1999.

32. D. Sangiorgi andA. Valente. A DistributedAbstract Machine for SafeAmbients. In Proc. 28th
International Colloquium on Automata, Languages and Programming (ICALP’01), volume
2076 of LNCS, pages 408–420. Springer-Verlag, 2001.

33. T. Thorn. Programming Languages for Mobile Code. ACM Computing Surveys, 29(3):213–
239, 1997.

34. V. Vasconcelos, L. Lopes, and F. Silva. Distribution and Mobility with Lexical Scoping in
Process Calculi. In Workshop on High Level Programming Languages (HLCL’98), volume
16(3) of ENTCS, pages 19–34. Elsevier Science, 1998.

35. J. Vitek and C. Tschudin, editors. Mobile Object Systems - Towards the Programmable
Internet, number 1222 in LNCS. Springer, 1997.

36. J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents. AAAI Press and MIT
Press, 1996.

A Generic Membrane Model(∗)

(Note)

Gérard Boudol

INRIA Sophia Antipolis, BP 93 – 06902, Sophia Antipolis Cedex, France

Abstract. In this note we introduce a generic model for controlling
migration in a network of distributed processes. To this end, we equip the
membrane of a domain containing processes with some computing power,
including in particular some specific primitives to manage the movements
of entities from the inside to the outside of a domain, and conversely. We
define a π-calculus instance of our model, and illustrate by means of
examples its expressive power. We also discuss a possible extension of
our migration model to the case of hierarchically organized domains.

1 Introduction

In the past few years, various formal models for explicit distribution and mi-
gration of code have been proposed, mostly based on the π-calculus [19] (like
π1l [1], Dπ, [14], lsdπ [20], NomadicPict [23], and the Seal calculus [24])
or on the Mobile Ambients calculus [8] (like the Boxed Ambients [5] and the
Safe Mobile Ambients [16]), with the notable exceptions of OBLIQ [6] (which is
object-based), Klaim [10] (which is based on the Linda tuple space for commu-
nication and coordination), and the Distributed Join-calculus [11]. In all these
models, there is a notion of a domain – or site, or locality [4, 9], or Ambient
– where computations take place. These models also provide, more or less ex-
plicitly, primitive constructs for moving code from a domain to another. The
moving entities may actually be quite diverse, from domains to closures, includ-
ing processes (in the π-calculus sense), and even more so if we also consider the
various programming languages, often based on Java, that have been proposed
for mobile computations (see [12] for a survey).

In most of these models, the migrating entities may move quite freely from
one domain to the other, provided that the destination domain is accessible, as
in Dπ or the Mobile Ambients calculus for instance. However, it would clearly be
better to have some means for a domain to control the migration of code through
its boundary, for security purposes for instance. Indeed, some of the previously
mentioned models offer such means. For instance, in π1l [1], where failures are
taken into account, the success of a migration depends on the status, running or
stopped, of the destination domain. In the Seal calculus [24], moving a seal is

(∗) Work supported by the MIKADO project of the IST-FET Global Computing
Initiative.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 208–222, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Generic Membrane Model 209

achieved by means of higher-order communication, and, as in the π-calculus, the
receiver of the moving seal may be in various states, and this allows for control-
ling migration. Similarly, in the Safe Ambients [16], there is a channel associated
with a domain for each capability, and especially in and out, and this provides a
means to reject migration. However, this controlling power remains limited: for in-
stance, one cannot in these models easily program a domain which would forward
incoming entities to another destination, or dispatch them to a group of domains.

The M-calculus [22] was specifically designed to provide a notion of a pro-
grammable domain, in order to equip sites with various semantics, coping for in-
stance with failures, security concerns, resource management, verification of mo-
bile code, and so on. To this end, a domain is enriched with a new component,
the controller, which in particular filters incoming and outgoing messages. The
M-calculus then introduces a primitive for “passivating”, or reifying a domain,
which is used to derive various migration behaviours. This passivate construct
is extremely powerful, and it may seem a little unnatural to have to reify a whole
domain in order to accept an incoming agent for instance. In this paper, we shall
elaborate on the idea of a programmable domain of the M-calculus, focusing on
the migration aspect. In particular, we keep the idea that a domain has, besides its
name and content, a controller part, which is the one we are interested in here. We
call this part a membrane, thus elaborating on the chemical metaphor [2], where a
membrane {[]} is used as an evaluation context, in which computations can take
place. Then the main idea here is to give some “thickness” to membranes, pro-
viding them with some computing power, in order to control their permeability,
that is to control the movements of entities between the outside and the inside of
a domain (this is similar to the idea of an “airlock” in the early Cham [2]).

Our purpose is not to design a full programming model, aiming at Turing
completeness, but rather to provide a formal model which could be combined
with various programming styles regarding the content of domains. This is the
sense in which our model aims at being “generic”: we shall not specify any partic-
ular choice regarding the migrating entities, but we only make a few assumptions
about what the content of a domain should support in order to be compatible
with our membrane model. As a matter of fact, there will be only two such
requirements: the content of a domain should, if migration to the outside is to
be performed, be able to send messages to the enclosing membrane. Conversely,
if migration to the inside is to be supported, the content of a domain should
be able to dynamically accept (as new processes or threads for instance) new
entities for execution. Regarding the membrane itself, that is the controller part
of a domain, our model relies on a few primitives, mainly for sending messages
to other domains, and adding new entities for execution to the content of the
domain. Using for instance a π-calculus style for programming the membranes,
we show, by means of examples, the expressive power of the proposed model.

2 The Migration Model

As indicated in the Introduction, we shall elaborate on the chemical metaphor
(aka multiset rewriting, or structural equivalence), regarding a system of con-

210 G. Boudol

current activities as a chemical solution (a multiset) made of molecules, possibly
reacting when they come into contact. In [2] we stated a general “membrane
law”, asserting that computations can take place in any solution, enclosed into
a membrane. In this setting, we may regard a domain as a named membrane.
However, as we said, we will equip the membrane itself with some computing
power, to control its permeability. Then we could use the notation a{S [P]} for
a domain named a, with controller S and content P . However, this turns out to
be not very readable, and we will rather write a{S}[P].

These domains with a programmable membrane are components of concur-
rent systems called networks, that may also contain “packets”, that is, messages
with a destination. Let us introduce some syntax for networks of domains and
packets. Assuming given a set N of names, ranged over by n, m . . . and contain-
ing the subset D of domain names, ranged over by a, b, c . . ., the networks are
described using the following syntax:

A, B a{S}[P] | a〈M〉 | (A ‖ B) | (νn)A

where S is any controller, P is any content, that we call a process, a〈M〉 is a
packet, containing a message M with destination a, (A ‖ B) is the parallel com-
position, intended to represent the (physical or logical) juxtaposition of domains,
and (νn)A is, as in the π-calculus, scope restriction, making the name n private
to the sub-network A. In this section we shall not consider any syntax for con-
trollers S, processes P , or messages M . We shall rather assume that the con-
trollers are states of a given transition system, and similarly for processes. We
distinguish two kinds of transitions: unlabelled ones, S → S′ or P → P ′, describe
the internal computations a controller or a process may perform, which do not
concern its interactions with the environment. The latter will be described by la-
belled transitions. Regarding the processes, we make the following assumptions:

(1) it should be possible to dynamically add new processes for execution
to the content of a domain. We represent addition of a new process Q to
an existing content P , resulting in a process P ′, by a labelled transition

P
↓Q−−→ P ′

(2) it should be possible to send messages from the content of a domain
to its enclosing membrane. These “upward messages” are denoted ↑M ,
and the fact that the process P sends the message M to the enclosing
membrane, and becomes P ′ in doing so, is denoted

P
↑M−−→ P ′

Typically, using a CCS-like syntax for processes, we would have P
↓Q−−→ (P | Q)

and ↑M.P
↑M−−→ P , but we shall not further analyze these transitions in the fol-

lowing. Regarding the membranes, controlling the migration from and to the
content of a domain, we shall make similar assumptions:

(3) the membranes have the ability to receive messages (coming either
from the inside or the outside of the domain), performing transitions of
the form

A Generic Membrane Model 211

S
↓M−−→ S′

(4) the membranes have the ability to perform specific actions to move
a process from the membrane to the inside of the domain, and to send
messages to another domain in the network. Moving a process from the
membrane to the content of a domain is described by transitions of the
form

S
in〈P 〉−−−→ S′

while sending a message in the network corresponds to a transition

S
out〈b,M〉−−−−−−→ S′

Let us denote by S, P and M respectively the sets of controllers, processes
and messages, and let

Lp = { ↓P | P ∈ P } ∪ { ↑M | M ∈M}

and

Lc = { ↓M | M ∈M} ∪ { in〈P 〉 | P ∈ P } ∪ {out〈b, M〉 | b ∈ D, M ∈M}

be respectively the sets of transition labels for processes and controllers. Then,
summarizing, our migration model relies upon a system

Proc = (P,→, { L−→| L ∈ Lp })

for processes, and a system

Control = (S,→, { L−→| L ∈ Lc })

for controllers. This is the basis on which we define the semantics of domains, and
of networks. Notice that we assume here that a message is a passive entity, that
does not compute by itself: there is nothing like M → M ′ in our model. As it has
become standard (following Milner’s presentation of the Cham [17]), to formu-
late the operational semantics, we introduce a structural congruence. Assuming
that a notion of free and bound occurrences of names in controllers, processes
and messages is defined, as well as a notion of name substitution {n �→m}, the
structural congruence is the least congruence ≡ on networks satisfying

(νn)A ≡ (νm){n �→m}A m not free in A

((A ‖ B) ‖ C) ≡ (A ‖ (B ‖ C))
(A ‖ B) ≡ (B ‖ A)

((νn)A ‖ B) ≡ (νn)(A ‖ B) n not free in B

Then the transition rules are as follows. First, we have to express the fact
that computations can occur within a membrane and a domain:

S → S′

a{S}[P] → a{S′}[P]
(R1)

P → P ′

a{S}[P] → a{S}[P ′]
(R2)

212 G. Boudol

The next rule (R3) (together with R9) asserts that a packet can be delivered
to the membrane of the destination domain, if the membrane is ready to accept
it. Similarly, the rule (R4) deals with the case where the message is sent from
the content of the domain:

S
↓M−−→ S′

(a〈M〉 ‖ a{S}[P]) → a{S′}[P]
(R3)

S
↓M−−→ S′ P

↑M−−→ P ′

a{S}[P] → a{S′}[P ′]
(R4)

The rule (R5) below describes how to add a new process to the content of
a domain, by means of the in construct, and similarly the rule (R6) describes
how to send a message from a membrane to the network, by means of the out
construct. Observe that we assume that the network is always ready to accept
a message from a domain:

S
in〈Q〉−−−−→ S′ P

↓Q−−→ P ′

a{S}[P] → a{S′}[P ′]
(R5)

S
out〈b,M〉−−−−−−→ S′

a{S}[P] → (b〈M〉 ‖ a{S′}[P])
(R6)

Finally we have:

A → A′

(A ‖ B) → (A′ ‖ B)
(R7)

A → A′

(νn)A → (νn)A′
(R8)

A ≡ B A → A′

B → A′
(R9)

Notice that a process P is not allowed to compute inside a call in〈P 〉. Two
important points must be noted:

(1) there is no way for a message to go directly from the outside of a
domain to its content, or conversely. Any message to or from a domain
has to transit through the membrane, where it is handled (rules R3-R4).

(2) there is no way for an entity to leave the membrane apart from being
transmitted as an argument of the in and out primitives (R5-R6).

This means that migration, that is interactions between domains, by means
of messages sent in the network, is always under the control of the membranes.
The primitives in and out are predefined procedures, the semantics of which
is described by (R5) and (R6), and which only have a meaning when they are
called from within a membrane. Notice also that a membrane has, thanks to
the in construct, a computing power which is of higher-order with respect to the
processes running in a domain. One should also remark that our model adheres to
the “locality principle”, and more precisely to the Dπ [14] “go and communicate”
philosophy: there is no reduction rule that involves more than one domain in its
left-hand side. In other words, we do not require any synchronization between
domains, nor do we assume any “action at a distance”. In this way, we do not
have to assume that the network has any particular computing power, apart from

the one of routing the packets (1). For instance, if S
out〈b,M〉−−−−−−→ S′ and R

↓M−−→ R′,
the following transition occurs, in two steps, modulo structural congruence:

(1) and supporting scope extrusion.

A Generic Membrane Model 213

a{S}[P] ‖ b{R}[Q] ∗→ a{S′}[Q] ‖ b{R′}[P]

We could have adopted this as an atomic transition, thus doing without
explicit packets b〈M〉. However, considering this sequence as an atomic step
would introduce a synchronisation between domains, whereas by our rules a
message is allowed to go out of a locality even if its destination domain does not
exist. We think it is more realistic to assume that the network is asynchronous –
that is, sending a message is never blocked, so that the decision to choose among
several messages to send is only local.

Let us further comment on our model, comparing it with the one of Dπ. In Dπ
the notion of a packet is implicit: a packet a〈M〉 is actually represented as a domain
a[M], and the rule for incoming messages is replaced by a structural equivalence:

a[P] ‖ a[Q] ≡ a[P | Q]

We do not adopt such a structural law here, because our purpose is to control
incoming processes, and also because this would mean merging the membrane
and the content of domains bearing the same name, and this does not fit very well
with the idea of a controlled domain. Therefore the “routing” mechanism is non-
deterministic, in the case where a message has two possible destinations, like in

a〈M〉 ‖ a{S0}[Q0] ‖ a{S1}[Q1]

which seems quite acceptable as a network behaviour. As a consequence of not
having confused a〈M〉 with a[M] as in Dπ, we lose the capability one has in
this calculus to dynamically create localities: in Dπ the out〈a, M〉 construct is
written a :: M (or go a.M), where M can actually be any process, with the rule

b[a :: P | Q] → a[P] ‖ b[Q]

(Thanks to the previously mentioned structural equivalence, we actually
don’t even have to mention Q in this rule.) It is certainly useful to have this
capability of creating domains, which could be expressed with a new construct
mk dom〈b,S, P 〉, with the rule

S
mk dom〈b,T,Q〉−−−−−−−−−−→ S′

a{S}[P] → (a{S′}[P] ‖ b{T}[Q])

However, we shall not use such a construct here. Still keeping the locality
principle, a membrane could also be endowed with a capability kill of destroy-
ing the domain it controls, and one could also imagine some further ways in
which membrane may control the content of a domain. However, we shall not
explore this here.

3 A π-Calculus Based Model

In order to give more substance to our membrane model, we shall in this section
introduce a particular instance, where the membranes are processes written using
the π-calculus style. That is, we completely specify a Control system here, which
essentially amounts to specifying what are the messages and how they are dealt

214 G. Boudol

with. This instance of our model will still be “generic”, in the sense that we do
not further analyze the process part Proc. It should be easy to design a similar,
Linda-based model for instance, replacing the channel based communication by
communication through a tuple space, or an ML-like model, where messages are
function calls (however, in this latter case we should have a way of dealing with
dynamically incoming function calls), or maybe an object-oriented model, where
messages are method invocations.

We assume that the set N of names contains a set Ch, disjoint from D, of
channel names, ranged over by u, v, w We also sometimes regard names as
variables, written x, y, z . . . We will not make any formal distinction between
process variables, channel variables and domain variables, which respectively
stand for processes, channel names and domain names (a type system would be
useful for that purpose). In the examples we use X, Y , Z . . . to range over process
variables. We also assume that, although they will be used in a similar way as
channel names, the constants in and out of the migration model are not names
in N . In the π-based instance of our model, the syntax for writing control pro-
grams, occurring in the membranes, is the standard syntax of the (asynchronous,
polyadic) π-calculus [3, 15, 18], enriched with the specific constructs in and out
of our migration model:

A, B a{S}[P] | a〈M〉 | (A ‖ B) | (νn)A networks

S, T nil | in〈P 〉.S | out〈a, M〉.S | M controllers

| u(x).S | !u(x).S | (S | T) | (νn)S

P, Q · · · processes

M u〈V 〉 messages

V n | P | · · · values

The messages are tuples of values sent on a channel – which can also be in-
terpreted as the name of a procedure, so that a message is a procedure call, with
arguments. The values that can be communicated in messages are either names,
or processes, or else values of the usual kind (truth values, integers...), which we
freely use, together with the corresponding constructs (like conditional branch-
ing), for illustration purposes. Since processes may be arguments in a message,
the controller model is of higher-order with respect to the process model. This is
crucial for controlling the migration of processes, since this allows us to remove,
duplicate, as well as send a process as an argument to various channels for vari-
ous puposes. As usual, u(x).S is a receiver controller, waiting for some message
on the channel u. Notice that we restrict replication !S to receivers. It should
also be observed that, since we assumed that in and out are not names, there is
no receiver with these names, according to our assumption that these represent
predefined procedures, with a fixed – not programmable – semantics. Regarding
the in and out constructs, we have adopted a “synchronous” style. That is,
calling one of these procedures, in in〈P 〉.S and out〈a, M〉.S, involves an explicit
continuation S. The reason is that we could not derive, as this can be done for

A Generic Membrane Model 215

sending names, this synchronization from an asynchronous version, where S is
nil, because invoking in and out does not allow sending a return channel.

The operational semantics of this calculus is standard: first, we define the
structural equivalence for controllers, still denoted ≡, as the least equivalence
compatible with the static constructs for controllers, that is

S ≡ S′

(S | T) ≡ (S′ | T)

S ≡ S′

(T | S) ≡ (T | S′)

S ≡ S′

(νn)S ≡ (νn)S′

and satisfying

(νn)S ≡ (νm){n �→m}S m not free in S
((S | T) | U) ≡ (S | (T | U))

(S | T) ≡ (T | S)
(S | nil) ≡ S

((νn)S | T) ≡ (νn)(S | T) n not free in T

Then the transition rules for controllers are the usual communication rules
of the π-calculus:

(u〈V 〉 | u(x).S) → {x �→V }S (u〈V 〉 | !u(x).S) → ({x �→V }S | !u(x).S)

together with

S
↓M−−→ (S | M) in〈P 〉.S in〈P 〉−−−→ S out〈a, M〉.S out〈a,M〉−−−−−−→ S

and
S → S′

(S ‖ T) → (S′ ‖ T)

S → S′

(νn)S → (νn)S′
S ≡ T S → S′

T → S′

and similarly for the labelled transitions:

S
L−→ S′

(S ‖ T) L−→ (S′ ‖ T)

S
L−→ S′ n not free in L

(νn)S L−→ (νn)S′

S ≡ T S
L−→ S′

T
L−→ S′

This provides us with the description of the Control system we are considering
in this section (although in the examples we shall use some further primitives, as
we said). Finally the structural congruence over networks has to be extended with

S ≡ T

a{S}[P] ≡ a{T}[P]

n �= a & n not free in P

a{(νn)S}[P] ≡ (νn)a{S}[P]

Notice that we do not allow communication at-a-distance, like for instance

a{u〈V 〉 | S}[P] ‖ b{u(x).R | T}[P] → a{S}[P] ‖ b{{x �→V }R | T}[P]

This can only be achieved using out〈b, u〈V 〉〉 in the a membrane. This means
that the channel names, although they are “ubiquitous” and globally known,
have a local meaning, provided by the receivers in the membranes.

216 G. Boudol

Now let us see some examples. (We will abbreviate as usual in〈P 〉.nil and
out〈a, M〉.nil as in〈P 〉 and out〈a, M〉 respectively.) In the π1l [1] and Dπ [14]
calculi there is a construction, denoted go(b, P) (2), to send the process P for
execution in the remote site b. This can be interpreted as an upward message
↑exit〈b, P 〉 to the enclosing membrane (where exit is a name), which is supposed
to define a local protocol for sending a process elsewhere. Then, assuming that
the procedure to enter a domain is named enter , a Dπ domain a[P] can be
represented (3) as a{S}[P] where the membrane contains the following definitions
for the ports enter and exit :

S =
(
!enter(X).in〈X〉 |
!exit(y, X).out〈y, enter〈X〉〉

)
For instance, if P

go(b,Q)−−−−−→ P ′, that is P
↑exit〈b,Q〉−−−−−−→ P ′, and if we let A = a{S}[P]

and A′ = a{S}[P ′], then we have

A → a{S | exit〈b, Q〉}[P ′] → a{out〈b, enter〈Q〉〉 | S}[P ′] → b〈enter〈Q〉〉 ‖ A′

Then, if R
↓Q−−→ R′, and if we let B = b{S}[R] and B′ = a{S}[R′], we have

A ‖ B
∗→ A′ ‖ b{enter〈Q〉 | S}[R] → b{in〈Q〉 | S}[R] → A′ ‖ B′

Therefore this kind of membrane may be called transparent, since it does not
perform any control on the migrating entities, and just lets them go. Notice that
here, as in the following examples, we are implicitly assuming a dynamic binding
mechanism: when, for instance, a process Q moving from domains to domains
calls the exit procedure, it is the local definition, contained in the enclosing
membrane, that will be executed, not the one of the site from which the process
originates. This is in fact built-in in the π-calculus semantics, where names have a
global, or more precisely “ubiquitous” meaning, and in the local communication
discipline we have adopted (there are no distant communications, involving two
distinct domains for instance).

In π1l [1], a locality may fail, and is able to send messages only if it is in
a “running” state. Moreover, a locality offers two public ports stop and ping
respectively to make it fail and to test its status, running or stopped. Then a
π1l domain, initially in a “running” status, may be represented as a domain
with a membrane of the following kind – assuming that some further computing
constructs, like conditional branching, are available:

(2) This is written spawn(b, P) in π1l. In Dπ this is either expressed as a message,
denoted b :: P , or as an action prefix go b.

(3) We do not claim that this provides a faithful encoding of the Dπ-calculus. Indeed,
the structural equivalence a[P] ‖ a[Q] ≡ a[P | Q] of Dπ mentioned above, by which
there is only one site bearing a given name in a network, seems difficult to handle
in the present setting.

A Generic Membrane Model 217

S = (νs)
(
s〈true〉 |
!enter(X).in〈X〉 |
!exit(y, X).s(t).if t then (out〈y, enter〈X〉〉 | s〈t〉) else (nil | s〈t〉) |
!stop.s(t).s〈false〉 |
!ping(y, z).s(t).(out〈y, z〈t〉〉 | s〈t〉)

)
The local state s〈t〉 of the membrane indicates the status of the domain: run-

ning if t = true, and failed otherwise (4). Notice that this controller is very much
like an object, with a local state and a set of methods. As one can see, nothing
can be emitted from a failed domain, since in this case the body of the exit pro-
cedure is equivalent to nil. The syntax for the ping construct is slightly different
from the one of π1l, because that calculus uses a global communication discipline,
while we assume here the local communication discipline of Dπ. Specifically, a
ping〈b, v〉 message provides as arguments the locality b and the port v at that
locality to which to send the result of the invocation of the ping procedure,
that is the status (true for “running”, false for “failed”) of the locality. On the
other hand, we have followed the π1l formalization of a failed site, which still
accepts incoming processes. We could however have an alternative semantics for
the enter procedure, which makes the membrane of a failed site opaque, namely

!enter(X).s(t).if t then (in〈X〉 | s〈t〉) else (nil | s〈t〉)

We would get a different semantics with an “elastic” membrane, on which
messages are bouncing when the domain has failed:

!enter(X).s(t).if t then (in〈X〉 | s〈t〉) else (out〈a, enter〈X〉〉 | s〈t〉)

Indeed, if there are domains with the same name a, the rejected messages get
a chance to be accepted somewhere else. As another example, one can imagine
that the exit procedure, instead of sending directly its argument to its destination
as in the “transparent membranes” of Dπ, sends it to a local routing procedure,
defined in each node. Then the exit procedure would be replaced by

!exit(y, X).route〈y, X〉 |
!route(y, X).if y = host then in〈X〉

else let z = next hop〈y〉 in out〈z, route〈y, X〉〉

Here we assume a constant host, the (local) value of which is the name of
the domain in which it occurs, and we also assume that a local routing table,
called next hop, is available, which gives the next node on the route towards the
given destination.

One can easily imagine other examples, like forwarding incoming entities to
a group of sites, or delegating them for processing to another site, for instance.

(4) The message s〈t〉 is also used as a lock for the mutual exclusion of the procedures
exit , stop and ping .

218 G. Boudol

In this way, one can establish a logical hierarchy of domains, where a site only
directly accepts incoming entities if they come from a given group of localities,
and otherwise delegates their processing to another site. For instance, assuming
that a component value transmitted in a packet is a group g of localities, a site
may accept or reject migrating processes depending on a predicate p on groups:

!enter(g, X).if p〈g〉 then in〈X〉 else nil

Another example of a membrane in which the enter/exit protocol depends
on the local state of the membrane is a counting membrane. To write it here we
assume that the language is enriched with integers. Then, in this example, the
local state of the membrane is a counter c which is incremented whenever some
entity enters, and decremented when some entity exits the domain. Moreover,
there is a bound n on the number of possibly entering entities. The code is,
assuming that the membrane becomes opaque when the bound is reached:

S = (νc)
(
c〈0〉 |
!enter(X).c(z).if z < n then (in〈X〉 | c〈z + 1〉) else (nil | c〈z〉) |
!exit(y, X).c(z).(out〈y, enter〈X〉〉 | c〈z − 1〉)

)
4 On Migration in a Hierarchically Structured Network

In this section we discuss a possible adaptation of our model to a hierarchical or-
ganization of domains. In a hierarchically structured network, a domain may be
embedded into another one. Since in our model a domain has two parts – the mem-
brane and the content –, there are a priori two possibilities for the nesting of do-
mains: a domain may be embedded into the membrane, or into the content part of
another domain. However, since the membrane only has the rôle of controlling the
gates of a domain, only the second possibility looks meaningful. It is not difficult
to adapt our model to this case of hierarchically structured networks. However,
it is clear that we cannot in this case maintain to the same extent the “paramet-
ric” aspect of our model: we have to make strong assumptions about the process
language, namely that it allows for the construction of networks of domains as
processes. That is, the process syntax should contain the following clauses:

P, Q a{S}[P] | a〈M〉 | (P ‖ Q) | (νn)P | · · ·

so that we may represent the dynamic addition of new processes as follows, using
parallel composition:

Q
↓P−−→ (Q ‖ P)

Then the transition system Proc for processes should satisfy the rules gov-
erning the behaviour of networks, (R1) to (R9). On the other hand, there is
nothing to change in the semantics of controllers, and we may use in particular
the π-calculus instance of the previous section, with the same examples.

In the rest of this section we assume that the controllers are encoded as
π-calculus expressions, as described in the previous section, and we discuss a

A Generic Membrane Model 219

possible adaptation and extension of the model in this case. With hierarchically
structured domains, where domains are processes, we gain the ability of moving
domains around, in an “objective” manner (see [8] for this terminology), that
is as the content of messages, since a process, and therefore also a domain is a
transmissible value. (We actually also have the ability to make a whole network
migrate. It is not yet clear how useful this extra expressive power is, but this
certainly deserves to be investigated.) This suggests that we could enrich the
model, following the ideas of the Mobile Ambients calculus [8] (and of [11, 23]),
with the ability for a membrane to send the domain it controls, in a “subjective”
manner, as the content of a message. Since the destination of a message is either
the enclosing membrane, in the case of upward messages, or a sibling domain,
in the case of a packet, the reification of a domain as a message may take two
forms (5). Moreover, we also have to provide the name of a channel to which the
reified domain will be sent. To this end, we add to the model two new primitives
up〈u〉 and to〈a, u〉 to the syntax of controllers.

We also notice that, since a process may now be put in parallel with a domain,
the entities that may go out of a membrane, by means of the out construct, no
longer have to be restricted to packets a〈M〉. This means that we may now
use this construct with a slightly different syntax, namely out〈P 〉, so that we
now write out〈a〈M〉〉 instead of out〈a, M〉. It is obvious how to generalize the
semantics, modifying the rule (R6):

S
out〈Q〉−−−−−→ S′

a{S}[P] → (Q ‖ a{S′}[P])
(R6)′

This, however, should not be allowed if a{S}[P] is a top level domain, com-
ponent of a network, since a process cannot run at this level. We leave for further
research the question of how to cope with this, perhaps using a type system in
the style of [7]. Finally the syntax of the π-calculus based model of hierarchically
structured domains is therefore as follows:

A, B a{S}[P] | a〈M〉 | (A ‖ B) | (νn)A networks

S, T nil | in〈P 〉.S | out〈P 〉.S controllers
| up〈u〉.S | to〈a, u〉.S
| M | u(x).S | !u(x).S | (S | T) | (νn)S

P, Q a{S}[P] | a〈M〉 | ↑M | (P ‖ Q) | (νn)P | · · · processes

M u〈V 〉 messages

V n | P | · · · values

We shall not repeat the semantics of the previously introduced constructs,
but only give the meaning of the new primitives:

(5) If we had a π-calculus syntax for processes for instance, there would be another
possibility, which is to send a domain on a channel.

220 G. Boudol

a{up〈u〉.S | T}[P]→ ↑u〈a{S | T}[P]〉 a{to〈b, u〉.S | T}[P]→b〈u〈a{S | T}[P]〉〉

Again, the first of these transitions should not be allowed if performed by a
top level domain, component of a network, since an upward message ↑M cannot
be a component of a network.

This allows us to encode subjective moves, in the style of the Mobile Ambients
calculus [8], though not in an atomic way, since our model follows the locality
principle. To see this, let us assume that the membranes offer the ports enter
and exit , as in the examples of the previous section. Then the membrane of a
domain willing to go out of the enclosing domain should contain a call up〈exit〉.
For instance, if

S = (!exit(X).out〈X〉 | S′)

and
T = (up〈exit〉.nil | T ′)

then we have
a{S}[b{T}[Q] ‖ P] → a{S}[↑exit〈b{T ′}[Q]〉 ‖ P]

→ a{S | exit〈b{T ′}[Q]〉}[P]
→ a{out〈b{T ′}[Q]〉 | S}[P]
→ b{T ′}[Q] ‖ a{S}[P]

Similarly, the membrane of a domain willing to go into a sibling domain called
b should contain a call to〈b, enter〉. For instance, if

S = (!enter(X).in〈X〉 | S′)

and
T = (to〈b, enter〉.nil | T ′)

then we have
a{T}[Q] ‖ b{S}[P] → b〈enter〈a{T ′}[Q]〉〉 ‖ b{S}[P]

→ b{enter〈a{T ′}[Q]〉 | S}[P]
→ b{S | in〈a{T ′}[Q]〉}[P]
→ b{S}[P ‖ a{T ′}[Q]]

In this way, we can encode subjective moves à la Mobile Ambients [8]. How-
ever, the semantics is not exactly the one of Ambients’ movements. For instance,
since the transition

a{to〈b, u〉.S | T}[P] → b〈u〈a{S | T}[P]〉〉

can always be performed, a domain willing to go into a sibling one may fail
to do so and be stuck in a message b〈enter〈a{S | T}[P]〉〉 if there is actually
no sibling domain with name b. As one can see, the granularity of migration is
finer in the model we propose than in the Mobile Ambients calculus. Notice also
that, unlike in the Mobile Ambients calculus, in our model the critical pairs (or
overlapping redexes, or “interferences”, following the terminology of [16]) only
occur locally. More precisely, the conflicts between capabilities, and especially
up and to, occur in the membrane of a domain. In particular, according to the
locality principle, these conflicts do not involve several domains. Then one may

A Generic Membrane Model 221

hope that this form of non-determinism is simpler to deal with than the one we
find in the Mobile Ambients calculus.

5 Conclusion

We have presented a formal model for explicit distribution and migration of
code based on the idea of a programmable domain, that was first implemented
in the M-calculus [22]. Here we focused on programming the permeability of the
membrane, in order to get a simple model, which should be compatible with a
wide variety of programming styles. The M-calculus has recently been simplified
by Stefani into the calculus of “kells” [21]. It seems that a model like the one
proposed here could be encoded into the kell calculus, representing a{S}[P] as a
pair of nested domains, where the external one, named a, contains an encoding
of S, and the internal one, with a private name, contains an encoding of P .
Then the kell calculus may be regarded as a low-level model, with respect to the
migration calculus we introduced. However, in the kell calculus one has the ability
to bypass the discipline enforced in our membrane model. Therefore, we expect
that, as usual, one has means in the low-level model to break some desirable
properties (that should be expressed for instance as equivalences) that the high-
level model is supposed to enforce. In other words, we expect that an encoding
of a membrane model, as the one we introduced, into the kell calculus would not
be fully abstract. Then we think the membrane model we have presented in this
preliminary note deserves to be studied for itself.

Clearly, the membranes of a domain should be given more computing power
than the one we considered here. In particular, it is natural to imagine that,
in order to perform some verification on the migrating code, like type checking
or security checks (like in the “proof carrying code”), the membrane should be
able to deal with a representation (6) ‘P of the code of the incoming processes
into some manageable data structure. A first step in this direction is taken by
Hennessy et al. in their Safe Dπ-calculus [13], which also explores the idea of a
“programmable membrane”, from a typing point of view: the “membrane” of a
domain in Safe Dπ consists in (higher-order) typed ports, through which incom-
ing code must pass. The type checking which is performed to input incoming
code, based on a sophisticated type system, is the way in which migration is
controlled in Safe Dπ. It would be interesting to see how this could be expressed
in an extended version of our model.

References

[1] R. Amadio, An asynchronous model of locality, failure, and process mobility, CO-
ORDINATION’97, Lecture Notes in Comput. Sci. 1282 (1997).

(6) sometimes called “serialization”, although a more appropriate terminology would
be “gödelization”.

222 G. Boudol

[2] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Comput. Sci.
96 (1992) 217-248.

[3] G. Boudol, Asynchrony and the π-calculus, INRIA Res. Report 1702 (1992).
[4] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn, Observing localities, Theo-

retical Comput. Sci. 114 (1993) 31-61.
[5] M. Bugliesi, G. Castagna, S. Crafa, Access control for mobile agents: the cal-

culus of Boxed Ambients, ACM TOPLAS Vol. 26 No. 1 (2004) 57-124.
[6] L. Cardelli, A language with distributed scope, Computing Systems Vol. 8, No.

1 (1995) 27-59.
[7] L. Cardelli, G. Ghelli, A. Gordon, Mobility types for mobile Ambients,

ICALP’99, Lecture Notes in Comput. Sci. 1644 (1999) 230-239.
[8] L. Cardelli, A. Gordon, Mobile Ambients, FoSSaCS’98, Lecture Notes in Com-

put. Sci. 1378 (1998) 140-155.
[9] I. Castellani, Process Algebras with Localities, Chapter 15 of the Handbook

of Process Algebras (J. Bergstra, A. Ponse and S. Smolka, Eds), Elsevier (2001)
945-1045.

[10] R. De Nicola, G. Ferrari, R. Pugliese, KLAIM: a kernel langage for agents
interaction and mobility, IEEE Trans. on Software Engineering Vol. 24, No. 5
(1998) 315-330.

[11] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, D. Rémy, A calculus of
mobile agents, CONCUR’96, Lecture Notes in Comput. Sci. 1119 (1996) 406-421.

[12] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility, IEEE Trans.
on Soft. Eng. Vol. 24 No. 5 (1998) 342-361.

[13] M. Hennessy, J. Rathke, N. Yoshida, SafeDpi: a language for controlling mobile
code, Comput. Sci. Tech. Rep. 02, University of Sussex (2003).

[14] M. Hennessy, J. Riely, Resource access control in systems of mobile agents, In-
formation and Computation 173 (2002) 82-120.

[15] K. Honda, M. Tokoro, An object calculus for asynchronous communication,
ECOOP’91, Lecture Notes in Comput. Sci. 512 (1991) 133-147.

[16] F. Levi, D. Sangiorgi, Controlling interference in Ambients, POPL’00 (2000)
352-364.

[17] R. Milner, Functions as processes, Math. Struct. in Comp. Science 2 (1992) 119-
141.

[18] R. Milner, The polyadic π-calculus: a tutorial, Technical Report ECS-LFCS-91-
180, Edinburgh University (1991) Reprinted in Logic and Algebra of Specification,
F. Bauer, W. Brauer and H. Schwichtenberg, Eds, Springer Verlag, 1993, 203-246.

[19] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Information
and Computation 100 (1992) 1-77.

[20] A. Ravara, A. Matos, V. Vasconcelos, L. Lopes, Lexically scoping distribu-
tion: what you see is what you get, Foundations of Global Computing Workshop,
ENTCS Vol. 85 (2003).

[21] J.-B. Stefani, A calculus of kells, Foundations of Global Computing Workshop,
Electronic Notes in Comput. Sci. Vol. 85 (2003).

[22] A. Schmitt, J.-B. Stefani, The M-calculus: a higher-order distributed process
calculus, POPL’03 (2003) 50-61.

[23] P. Sewell, P. Wojciechowski, Nomadic Pict: language and infrastructure de-
sign for mobile agents, IEEE Concurrency Vol. 8 No. 2 (2000) 42-52.

[24] J. Vitek, G. Castagna, Seal: a framework for secure mobile computations, Work-
shop on Internet Programming Languages, Lecture Notes in Comput. Sci. 1686
(1999) 47-77.

A Framework for Structured Peer-to-Peer
Overlay Networks�

Luc Onana Alima, Ali Ghodsi, and Seif Haridi

IMIT-Royal Institute of Technology (KTH),
Swedish Institute of Computer Science (SICS)
{onana, seif}@sics.se, aligh@imit.kth.se

Abstract. Structured peer-to-peer overlay networks have recently
emerged as good candidate infrastructure for building novel large-scale
and robust Internet applications in which participating peers share com-
puting resources as equals. In the past three year, various structured
peer-to-peer overlay networks have been proposed, and probably more
are to come. We present a framework for understanding, analyzing and
designing structured peer-to-peer overlay networks. The main objective
of the paper is to provide practical guidelines for the design of structured
overlay networks by identifying a fundamental element in the construc-
tion of overlay networks: the embedding of k−ary trees. Then, a number
of effective techniques for maintaining these overlay networks are dis-
cussed. The proposed framework has been effective in the development
of the DKS system, whose preliminary design appears in [2].

1 Introduction

The exponential growth of the Internet has made it possible to connect billions
of machines scattered around the globe and to share computing resources such
as processing power, storage and content. In order to effectively exploit these
resources, the trend is to use the Internet as it was originally intended. That is, a
symmetric network through which machines share resources as equals. With this
in mind, a number of novel distributed systems/applications characterized by
large-scale and high-dynamism of their operating environment are being built. In
these distributed systems, participating peers directly share resources as equals
in a peer-to-peer fashion [7, 5, 17]. We name them, peer-to-peer (P2P) systems.

The high dynamism in P2P systems is due to two reasons mainly. First,
there is the need for freedom, peers should be able to join or leave the system
at any time. Second, peers or the underlying communication network, which is
typically the Internet, can fail at any time. To cope with this dynamism, these
systems should be stabilizing, that is, despite the high-dynamism, the system
should converge to legitimate configurations, without external intervention.

� This work was funded by the European project PEPITO IST-2001-32234, the Euro-
pean project EVERGROW IST-2004-001935, the Vinnova projects PPC and GES3
in Sweden.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 223–249, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

224 L.O. Alima, A. Ghodsi, and S. Haridi

Peer-to-peer systems are attractive in at least two respects. First, from the
user standpoint, peer-to-peer computing has a huge potential, as it reduces the
need for expensive back-end servers, typically used to perform complex tasks.
Moreover, the administrative costs are significantly reduced, as peer-to-peer
systems are in general built on autonomous systems, without a centralized ad-
ministration. Second, from the scientific perspective, peer-to-peer systems are
large-scale distributed systems that involve challenging issues such as fault-
tolerance, scalability and security.

The current trend in building P2P systems, consists in providing an
application-independent overlay network as a substrate on top of which novel
large-scale applications can be constructed. An overlay network is a logical net-
work on top of one or more networks. A well-known example of such networks
is the Internet. The main purpose of an overlay network is to provide effective
means by which a huge amount of computing resources are linked together and
accessed. And, as can be seen nowadays, various high-level distributed services
can be built on top of an overlay network [6, 3, 13]. The performance of these
high-level distributed services strongly depends on the properties of the under-
lying overlay network.

Two main design approaches can be identified for building overlay networks.
On the one hand, there are un-structured overlay networks [14, 11], in which peers
are extremely autonomous. That is, a peer joins the overlay network by connect-
ing itself to any other existing peers. We say that un-structured overlay networks
are built in an un-controlled fashion. Unstructured overlay networks have the ad-
vantage of providing flexibility when it comes to finding resources within the sys-
tem. For instance, arbitrary queries can be handled easily. However, they provide
restricted guarantees, because even if a data item were inserted into the system,
there is no guarantee that it will be located when needed. Furthermore, these
overlay networks tend to be inefficient, as they mainly use flooding for search. On
the other hand, there are structured overlay networks [26, 23, 24, 2, 1, 19], where
a peer joins the overlay network by connecting itself to some other well-defined
peers, based on its logical identifier. We say that structured overlay networks
are built in a controlled manner. These overlay networks provide high guaran-
tees but have a limited query language. For example, complex queries are not
supported in a “natural” way.

In this paper, our focus is on structured overlay networks [25, 2, 24]. Hence,
we will use the term overlay network to mean structured overlay network. The
core service that these overlay networks provide is a location-independent virtual
identifier based-routing1. That is, given a message along with a virtual identifier
vid, the overlay network routes the message to the ultimate destination dest(vid),
which is related to vid in a well-defined manner. We discuss the relation between
vid and dest(vid) in Section 2.3.

On top of the core service mentioned above, a number of high-level services
such as Distributed Hash Table (DHT), location-independent one-to-one commu-

1 In [8], the term key-based routing is used in place of virtual identifier based routing.

A Framework for Structured Peer-to-Peer Overlay Networks 225

nication (point-to-point), one-to-many communication such as broadcast [13, 10]
and multicast [4], object replication and caching under various consistency mod-
els can be built.

1.1 Motivations

Since the introduction of structured overlay networks, various such systems have
been proposed. A partial list includes [26, 23, 24, 2, 1, 19, 16, 18, 21], and new such
systems are probably to come. Unfortunately, existing structured overlay net-
works are presented in a fragmented way. As a consequence of this, understanding
any new such systems requires significant efforts. Furthermore, the analysis of,
as well as the comparison between, overlay networks becomes difficult. And, in
many cases, designing novel structured overlay networks amounts to re-inventing.

A careful analysis of most of the existing structured overlay networks reveals
at least the following common characteristics:

(i) Logarithmic Diameter. All existing structured overlay network designs we
know of strive to achieve (very) large networks with logarithmic diameter
while maintaining, at each peer, a compact routing table. Typically, the rout-
ing table at each peer is either of logarithmic or constant size. How the
logarithmic diameter is ensured varies (apparently) from one system to an-
other. Hence, to analyze the performance (in terms of overlay hops) of any
new system, significant efforts has to be re-invested. Therefore, there is a
need to identify any unifying fundamental concept behind the achievement
of logarithmic degree.

(ii) Convergence/Stabilization. To cope with the high dynamism, structured
overlay networks are designed to be convergent (or stabilizing). That is, if
ever the dynamism were ceased, the overlay network should self-configures
to reach and remain in legitimate configurations. And, even if the dynamism
were not stopped, the network should still route messages with acceptable
performance. To achieve this convergence or stabilization property, practical
maintenance techniques are needed.

1.2 Contributions

The motivations presented above point out two important aspects in which we
contribute. We propose a small set of practical design principles for understand-
ing, analyzing, building and maintaining structured overlay networks. The con-
tributions of this paper is the embedding of k-ary trees2.

To simplify the understanding of the logarithmic diameter, we propose the
embedding of k-ary trees as the fundamental concept. Briefly and intuitively, the
idea is to let each peer be the root of directed acyclic graph that spans the
whole system. We conjecture that any structured overlay network that ensures
logarithmic diameter under normal system operation (in a deterministic fashion),

2 In this paper, we abuse the terminology. We often use the term tree where the term
rooted DAG (Directed Acyclic Graph) should be used.

226 L.O. Alima, A. Ghodsi, and S. Haridi

is such that each peer is the root of an embedded k-ary tree along which a form
of interval/compact routing [27] is exploited.

In addition to the embedding of k−ary trees, we elaborate on the following
techniques introduced in [2],[12]:

(ii) Local Atomic Operation: To reduce disturbances when peers join and leave
the system, we propose that the join as well as the leave operation be man-
aged by restricted atomic operation that involve only a small part of the
overlay network.

(iii) Correction-on-Use: The use of local atomic operation does not guarantee
that the system will “immediately” be in legitimate configurations when-
ever peers join or leave the system. Anyway, this cannot be achieved in an
asynchronous distributed system. So, because of joins, leaves and failures,
routing table at peers become inaccurate. We propose the correction-on-use
technique as the basic technique for maintaining structured overlay networks.
With this technique, unnecessary bandwidth consumption is avoided. And,
for the system to perform optimally even under perturbation, the injected
traffic should be high enough.

(iv) Correction-on-Change: With correction-on-change, whenever a change oc-
curs in the system, all the peers that need to be updated are notified. The
main challenge is to find, efficiently, those peers that need to be updated.
Moreover, the notification should be performed in an efficient way. We pro-
vide effective mechanisms both for identification of the peers that need to
be updated and for the notification.

1.3 Road-Map

The rest of this paper is organized as follows. Section 2 summarizes the steps
to be considered when designing structured overlay networks. In Section 3, we
present the principle for embedding k−ary trees in a virtual identifier space.
The embedding of k−ary trees relies on the division of the virtual space that
be either relative or fixed. Section 4 presents the relative division of the space.
In section 5 we present the fixed division of the space. Section 6 is devoted to
the principle of local atomic operation, for joins and leaves of peers. In Sec-
tion 7, we present different techniques for maintaining structured overlay net-
works. Section 8 concludes the paper and points out some ongoing and future
work.

2 Steps in Designing Structured Overlay Networks

The steps in designing structured overlay networks are summarized in Figure 1.
An analysis of most of the existing structured overlay networks show that there
are a number of key design decisions that are to be considered, when building a
structured overlay network. We elaborate on these steps in this section.

A Framework for Structured Peer-to-Peer Overlay Networks 227

Fig. 1. a) Use F2 to map items onto the identifier space. Use F1 to map peers to the
identifier space. Decide an assignment of items to peers. Use an embedding of k−ary
tree to interconnect the peers

2.1 Decide an Identifier Space

Perhaps the first design decision to be made when designing a structured overlay
network is to decide on what will be the the virtual identifier space. Throughout
this document, we will use I to denote the identifier space. The choice of the
virtual identifier space is motivated by several reasons.

1. Addressing: the identifier space plays the role of an address space, used for
identifying resources to be interconnected by the overlay network. Each com-
puting resource participating in a structured overlay network receives a vir-
tual identifier taken from the virtual identifier space, I.

2. Scalability. To provide access to very large sets of resources the identifier
space is chosen to be a very large virtual space. This is simply an applica-
tion of the well-known principle of indirection for achieving (numerical [22])
scalability, as was done for the Internet. Typically, the size |I| = N is in
O(kd), for k ≥ 2, and some large positive integer d. Hence for a fixed k, the
size of the virtual space grows exponentially with base k.

3. Location-Independent Communication. Another important aspect of the vir-
tual identifier space is that it allows peers present in the system to commu-
nicate in a point-to-point or one-to-many manner irrespective of their actual
location. Thereby allowing for pure mobility.

The identifier space is assumed to have some “distance”, denoted Δ in this
paper. Formally, Δ is a function of type Δ : I × I → R, where R denotes the
set of real numbers. It is required that Δ satisfies at least the following three
properties

228 L.O. Alima, A. Ghodsi, and S. Haridi

(D1) : (∀x, y : x, y ∈ I : Δ(x, y) ≥ 0).
(D2) : (∀x : x ∈ I : Δ(x, x) = 0).
(D3) : (∀x, y : x, y ∈ I : Δ(x, y) = 0 ⇒ x = y).

and if possible, Δ can also satisfy the following two properties:

(D4) : (∀x, y : x, y ∈ I : Δ(x, y) = Δ(y, x)).
(D5) : (∀x, y, z : x, y, z ∈ I : Δ(x, z) ≤ Δ(x, y) + Δ(y, z)).

In case Δ satisfies all the above five properties, we have that (I,Δ) is a metric
space. However, in general this is not the case. In this paper, we shall say that
(I,Δ) is a “pseudo-metric” space to mean that properties (D1), (D2), (D3) are
satisfied and possibly (D4) and (D5).

The closeness metric, Δ, defined on the identifier space serves two purposes:
– clustering of resources around peers: Typically, a resource r will be assigned

to (or managed by) the peer whose virtual identifier is the closest to the
virtual identifier of r. We discuss this issue in Subsection 2.3.

– Routing message: virtual identifiers will typically be used to route message
to peers.

2.2 Mapping of Peers onto the Identifier Space

Each participating peer receives a virtual identifier, taken from I. In Figure 1,
F1 models the mapping of peers onto the identifier space. To implement this
mapping, each peer p is assumed to have some unique attribute that can be used
for mapping p onto the virtual space. The implementation of F1 can be done in
several ways. One way (the typical approach) is to use a globally known hashing
function such as SHA-1. The main advantage of this is that it gives a uniform
distribution of peers on the identifier space. However, uniform distribution of
peers over the virtual identifier space is not necessary if we want to cluster peers
in some specific manner. For instance, peers can be mapped onto the virtual
space in an ad-hoc fashion to achieve load-balancing or “physical” proximity.

2.3 Management of the Identifier Space by Peers

At any point in time, the identifier space is partitioned into subparts managed by
peers. This is achieved by mapping each identifier in the identifier space to a set
of responsible peers. Note that we here assume that an identifier can be mapped
onto several peers. This is usually the case for fault-tolerance and performance
improvement.

Formally, let P ⊆ I denote the identifiers of the peers in the system at a
certain point in time. A function mP : I → 2P takes an identifier and returns a
sub-set of the peers in the system that are responsible for that identifier.

At any point in time, each peer manages a sub-set of identifiers. The function
rP : P → 2I takes a peer and maps it to the sub-set of the identifier space that
the peer manages. The function rP is defined by rP(p) = {i ∈ I|mP(i) = p}.

A Framework for Structured Peer-to-Peer Overlay Networks 229

2.4 Mapping of Items onto the Identifier Space

As said in the introduction, an overlay network serves as the basis for intercon-
necting and accessing resources. Typically, it will serve for storing and retrieving
data items from the system. This is achieved by mapping these items onto the
virtual space.

Each resource (or item) accessible through a structured peer-to-peer overlay
network receives a virtual identifier, taken from I. In Figure 1, F2 models the
mapping of resources (items) onto the virtual identifier space.

The mapping F2 can be implemented in several ways. The typical approach
for implementing F2 is to use a globally known hashing function. The advantage
of this approach is that items are uniformly distributed on the identifier space.
However, it is worth noting that the use of a hash function is not necessary. In-
deed, items could be mapped such as to ensure logical proximity on the identifier
space between related, or similar, items. For instance, items can be mapped onto
the identifier space such that lexicographical ordering is ensured.

The advantage of a mapping that ensures logical proximity is that it enables
efficient range queries for similar items. It can also be used to map items to peers
within the same organizational boundary [15].

However, the disadvantage of such mappings is that they do not distribute the
items uniformly over the identifier space. Therefore special care needs to be taken
to ensure that the load on the peers responsible for the items is not skewed.

2.5 Decide a Structuring Strategy to Interconnect Peers

Using peer identifiers (i.e. identifiers assigned to peers) and possibly physical
proximity like in [24, 28], an overlay network, a directed graph, is built. Nodes
in this graph represent peers and outgoing arcs at a node of the graph model
routing pointers that the peer should maintain.

Typically, a structured peer-to-peer overlay network is built such as to guar-
antee logarithmic diameter while maintaining compact routing table of logarith-
mic or constant size.

2.6 Decide a Strategy for Maintaining the Overlay Network

The strategy for maintaining the overlay network is an important decision step.
Indeed, the techniques use for maintaining the overlay network has a significant
impact on the practicality of the resulting overlay network. We think that the
bandwidth will be one of the critical resources in the context of emerging peer-
to-peer technologies.

When designing an overlay network, careful analysis is needed to decide on
how the overlay network will be maintained. In section 7 we present effective
techniques that can be used to maintain overlay networks.

3 Embedding of k−Ary Trees

To organize peers in an efficient overlay network, a structuring strategy that is
easy to understand and implement is required.

230 L.O. Alima, A. Ghodsi, and S. Haridi

It is a well-known fact that logarithmic search goes hand in hand with tree
structures. This motivate our structuring strategy for connecting peers in the
overlay network. We propose the embedding of k-ary trees in the virtual space
such as to ensure overlay networks of diameter logk(N) while maintaining, at
each peer, a routing table of either logarithmic or constant size. In this paper,
the focus is on the embedding of k−ary trees such as to maintain, at each peer, a
routing table of logarithmic size. How to use our structuring strategy for overlay
networks where each peer maintains a routing table of constant size is an ongoing
work, however we will report some preliminary results in this paper.

The embedding of k−ary trees in the identifier space has several advantages.
For example, it is clear that by using the virtual k−ary tree, the analysis of
the worst, and average lookup path length becomes straightforward. Indeed, we
only need to know the height as well as the arity of the embedded virtual tree.
This is a simplification when compared to lengthly informal arguments often
encountered in the literature.

Furthermore, the embedding of virtual trees makes it possible to introduce
a novel technique for maintaining structured overlay networks. The correction-
on-use technique, explained in sub-section 7.3, which serves as the basis for
maintaining routing information in the DKS system. Before presenting the prin-
ciple for embedding virtual k−ary trees in the virtual identifier space, we first
introduce some assumptions and definitions.

3.1 Preliminaries

3.1.1 Assumptions
For the sake of simplicity, we assume that:
1. The virtual identifier space, denoted I, is a discrete space organized as a ring

of size N . For two arbitrary identifiers x and y, we use x ⊕ y (resp. x & y)
for the addition (resp. subtraction) modulo N .

2. N is a perfect power of k. That is, N = kd, k > 1 and d > 1. Note that the
principle described here applies as well for the case where N is not a perfect
power of k.

3. In this paper the distance function Δ : I × I → N is defined as follows: 3

Δ(x, y) = y & x (1)

3.1.2 Definitions
In this section the definitions used in the rest of this paper are presented.

As previously mentioned, a generic function mP is used for the management
of the identifier space. For simplicity we abuse notation and assume that the
function only maps each identifier to one single peer. In this paper we will use
the function succP as an instance of mP to map each identifier to the peer
managing the identifier.

3 Note that the co-domain of the distance function Δ is a subset of R, as we do not
deal with real numbers.

A Framework for Structured Peer-to-Peer Overlay Networks 231

Definition 1. Let succP : I → P be defined as follows.

succP(i) = i ⊕ min{Δ(i, j) | j ∈ P} (2)

We say that a peer p ∈ P is the successor of an identifier i iff succP(i) = p.
Given the mapping of items to the virtual identifier space (see Section 2.4), we
say that each item will be managed by its successor. I.e., an item o is stored at
peer succP(F2(o)).

Similarly to the function succP we define the function predP to denote the
peer preceding a given identifier.

Definition 2. Let predP : I → P be defined as follows.

predP(i) = i ⊕ max{Δ(i, j) | j ∈ P} (3)

The function closestn takes a set of identifiers and maps it to the element in
that set that is closest to n on the virtual identifier space, assuming clockwise
orientation on the ring.

Definition 3. Let n ∈ I. We define closestn : 2I → I as follows.

closestn(Z) = n ⊕ min{Δ(n, j) | j ∈ Z} (4)

3.2 The Principle for Embedding k-Ary Trees

The principle is to let each element of the identifier space, n, be the root of a
rooted directed acyclic graph denoted I-DAG(n). I-DAG(n) is a tree of height
d that spans the whole identifier space and is mainly used to determine intervals
in the identifier space. In addition, each peer, p, is the root of a rooted directed
acyclic graph denoted R-DAG(p). Each node in the R-DAG(p) denotes the set of
responsible peers for the corresponding intervals in I-DAG(p). Hence, I-DAG(p)
and R-DAG(p) conceptually show, as in interval routing/compact routing, how
the routing process goes for a query starting at the peer p.

The principle for embedding k−ary trees consists of three steps.

Step 1: From the virtual identifier space, I, and for each identifier p ∈ I, a
rooted directed acyclic graph denoted I-DAG(p), is produced by a systematic
and recursive division of I. The division of the space can be done either in a
relative or in a fixed fashion, as we show in Section 4 and Section 5. Each step
of the division process partitions the current space into at most k sub-spaces.

Step 2: For each identifier p, a virtual k−ary tree of height d rooted at p is
derived from I-DAG(p). We denote by R-DAG(p) the k−ary tree associated
with identifier p.

Step 3: For each peer p, a routing table, denoted Rtp, is derived from R-DAG(p)
taking into account the peers present in the system. Notice that due to the
dynamism, this routing table is actually time-dependent. In addition to the
routing table, every peer p will maintain a pointer to the successor of its identifier

232 L.O. Alima, A. Ghodsi, and S. Haridi

p plus one, i.e. succP(p⊕1). Similarly, each peer also maintains a pointer to its
predecessor, i.e. predP(p&1).

The net effect of the embedding of k−ary trees in the identifier space is that,
each participating peer will have the ability to “see” the virtual identifier space
from different perspectives (in the case where each peer maintains a routing table
of logarithmic size) that correspond each, to a level of its associated k−ary tree.

4 Relative Division of the Space

We now explain the relative space division principle. We proceed in three steps.
For an identifier p, we show the construction of I-DAG(p). Second we show
how to derive R-DAG(p). Then we construct Rtp. At each step, we illustrate
the concept by examples. Our approach for the relative division of the space
was initially presented in [9, 2]. In the present paper, we further formalize the
principle.

4.1 Constructing I-DAG(p)

In the relative division of the space, each identifier p has an associated rooted
directed acyclic graph I-DAG(p) that spans the whole identifier space. The di-
rected acyclic graph of an identifier p is different from the directed acyclic graph
of any other identifier q. Hence, formally, one key invariant of the relative division
of the space is

(∀p, q ∈ I : p �= q : I-DAG(p) �= I-DAG(q))

For an identifier n, each node in the I-DAG(n) is a sub-set of I. The root of
I-DAG(n) is I, that is the whole set of identifiers.

To derive all the nodes of I-DAG(n), the division process takes the root of
I-DAG(n) as input and then partitions it into k sub-sets. This is the first step
of the division. Each sub-set produced by the first step of the division is in its
turn partitioned into k sub-sets. This process repeats until we reach singleton
sub-sets.

The I-DAG(n) of an identifier n has d+1 levels. The root node, node at level
0, is denoted D0

0(n). At a level l (1 ≤ l ≤ d), I-DAG(n) has kl nodes, denoted
Dl

il
(n), where 0 ≤ il ≤ kl − 1. These nodes are defined by:

Dl
il
(n) =

{
I if l = 0 ∧ i0 = 0
{j ∈ Dl−1

� il
k (n) : j = n⊕ilkd−l⊕q, 0 ≤ q ≤ kd−l − 1} otherwise

(5)
From (5), one can see that the node Dl−1

� il
k (n) is the parent of nodes Dl

il+c(n)

where 0 ≤ c ≤ k − 1. Formally, I-DAG(n) =
(
VD, ED

)
, where:

A Framework for Structured Peer-to-Peer Overlay Networks 233

Fig. 2. Division of the space relative to identifier 0

Fig. 3. Division of the space relative to identifier 2

VD = {Dl
il
(p) | 0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1}

ED = {(Dl−1

� il
k (p), D

l
il+c(p)) | 1 ≤ l ≤ d, 0 ≤ c ≤ k − 1}

(6)

4.1.1 The Relative Division of the Space Illustrated.
To highlight the relative aspect of the division of the space explained here,
we show how the space is systematically divided for three different identifiers,
namely identifier 0, 2 and 4 assuming an identifier space of size N = 23.

Given that N = 23, the space is relatively divided in three steps until sub-
sets consisting each of a single element are reached. Figure 2 shows I-DAG(0),
Figure 3 gives I-DAG(2) and Figure 4 depicts I-DAG(4).

One can observe from Figure 2, Figure 3 and Figure 4 that the division of the
space for each identifier is different from the division of the space of any other
identifier.

4.2 Deriving R-DAG(p)

From the I-DAG(p) one can obtain a labeled tree R-DAG(p) associated to p as
we describe in this sub-section. For simplicity, we will assume that each node in
the virtual k−ary tree represents a responsible peer, but the model can easily

234 L.O. Alima, A. Ghodsi, and S. Haridi

Fig. 4. Division of the space relative to identifier 4

be extended such as to have at each node of R-DAG(p) a sub-set of responsible
peers.

The R-DAG(p) for an arbitrary peer p ∈ I has d + 1 levels. The root node,
node at level 0, is denoted T 0

0 (p). At a level l (1 ≤ l ≤ d), R-DAG(p) has kl

nodes, denoted T l
il
(p), where 0 ≤ il ≤ kl − 1. These nodes are formally defined

by:

Tl
il
(p) =

{
p if l = 0 ∧ i0 = 0
succ(closestφ(Dl

il mod k(φ))) with φ = T l−1
�il/k(p) otherwise

(7)
From (7), one can see that the node T l−1

� il
k (p) is the parent of nodes T l

il+c(p)

where 0 ≤ c ≤ k − 1. Formally, R-DAG(p) =
(
VT , ET

)
, where:

VT = {T l
il
(p) | 0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1}

ET = {(T l−1

� il
k (p), T

l
il+c(p)) | 1 ≤ l ≤ d, 0 ≤ c ≤ k − 1}

(8)

4.2.1 The R-DAG(p) for the Relative Division of the
Space Illustrated
As an example, Figure 8 shows the virtual 3−ary tree (actually a DAG) associ-
ated to peer identified by 5 in a system where P = {1, 2, 3, 5, 8}.

4.3 Deriving Routing Tables

The main goal of the division of the space is to ease the understanding of the
construction of structured overlay networks. We now show how to build the
routing table for an arbitrary peer p assuming that the virtual k−ary tree,
R-DAG(p), associated to a peer p is known.

To build the routing table for a peer p, informally, the principle is to move
from the root node of the virtual k−ary tree, R-DAG(p) associated to a peer p,
down to the leaf node, T l

0(p), 0 ≤ l ≤ d. At each step of the progress towards

A Framework for Structured Peer-to-Peer Overlay Networks 235

Fig. 5. Virtual 3−ary tree associated to peer 5 in a fully populated system

Fig. 6. Virtual 2−ary tree associated to peer 0 in a fully populated system

Fig. 7. Virtual 3−ary tree associated to peer 0 in a fully-populated

Fig. 8. Virtual 3−ary tree associated to peer 5 in a system with peers {1, 2, 3, 5, 8}

236 L.O. Alima, A. Ghodsi, and S. Haridi

Level Interval Responsible
1 [0 · · · 3] 0

[4 · · · 7] 4
2 [0 · · · 1] 0

[2 · · · 3] 2
3 [0] 0

[1] 1

Fig. 9. A possible routing table for peer 0 in a relative division of the space

the leaf node, T d
0 (p), a pointer is maintained4 to the responsible peer in each

of T l
0(p)’s immediate k children. Note that one of the pointers will always be to

peer p itself, as the responsible peer for T l
0(p) is always p.

Formally, let L = {1, · · · , d}, K = {0, · · · , k − 1}. The routing table Rtp of a
peer p is a function of type L ×K→ P defined as Rtp(l, i) = T l

i (p).
Obviously, the size of the resulting routing table at a peer p is (k− 1)d. The

factor (k − 1) in this expression is due to that at each level l ∈ L peer p has a
pointer to itself.

4.3.1 Routing Tables for the Relative Division of the
Space Illustrated
As an example, consider the virtual 2−ary tree for identifier 0 given in Figure 6,
where k = 2 and we compute the routing table of peer 0. Moving from the
root node (level 0) to level 1, pointers are stored to all the immediate children
of T 0

0 (0): peer 0 and peer 4. From level 1 to level 2, pointers are kept to all
immediate children of T 1

0 (0): peer 0 and peer 2. Finally, when moving from level
2 to level 3, pointers are maintained to peer 0 and peer 1.

From Figure 6, the routing table of peer 0 is immediately obtained by ap-
plying the above described principle and Figure 9 depicts the resulting routing
table for peer 0. The routing table for any other peer can be computed in a
similar way. For each responsible peer Rt0(l, i) we have shown the corresponding
interval Dl

i(0) of I-DAG(0). The routing process is simply intervall routing.
The reader familiar with systems such as Chord [26, 25] and DKS[2] can

observe that these systems fit the relative division of the space. Indeed, these
systems use the same rule as described above for choosing routing entries.

5 Fixed Division of the Space

In this section, we describe the fixed division of the space for the embedding of
the k−ary trees. The idea behind the fixed division of the space is inspired from
decoding trees, and is probably the foundation of most of the structured overlay
networks which use prefix-based routing. Recall that decoding trees are rooted

4 By maintaining a pointer to another peer we mean that routing information, such
as network address, about the peer is maintained in a routing table.

A Framework for Structured Peer-to-Peer Overlay Networks 237

trees used to convert sequence of code symbols to entities those code sequence
represent.

As for the case of relative division of the identifier space, we proceed in
three steps. First we build the I-DAG that result from the division of the space.
Thereafter we derive the virtual k−ary tree, R-DAG(p) for a peer p. Finally, we
show how to construct the routing tables for a peer.

5.1 Constructing I-DAG(p)

In the fixed division of the space, we build a fixed I-DAG from which all k−ary
trees are derived. In contrast to the relative division of the space, the I-DAG is
not relative to a peer, but instead fixed. Hence, we have the same I-DAG for all
identifiers: (∀p, q ∈ I : I-DAG(p) = I-DAG(q)). Consequently use I-DAG instead
of I-DAG(p).

In similarity with the relative division of the space, each node in the I-DAG
will contain a set of identifiers. However, the identifiers in the fixed division of
the space will be represented as strings of length d made up of symbols from the
alphabet Σ = {0, .., k − 1} 5

The I-DAG constructed for the fixed space division has the invariant that all
the strings in a node of the I-DAG have the same prefix. More specifically, all
strings of a node at a level l (l ≥ 1) of the I-DAG, share a prefix of length l
symbols.

We first set up some notations. In the following of this section, we use Σd to
denote the set of all (non-empty) strings of length d, formed by concatenating
symbols from Σ. The identifier space is regarded as the set Σd.

The root of the I-DAG is denoted Q0
0 with Q0

0 = Σd. That is, the root node of
the fixed I-DAG contains all the identifiers. To derive all the other nodes of the
I-DAG, the division process takes the root of I-DAG as input and then partitions
it into k sub-sets. This is the first step of the division. Each sub-set produced
by the first step of the division is in its turn partitioned into k sub-sets. This
process repeats until we reach singleton sub-sets.

Formally, the I-DAG has d+ 1 levels. At a level l (1 ≤ l ≤ d), I-DAG has kl

nodes, denoted Ql
il
, where 0 ≤ il ≤ kl − 1. These nodes are defined by:

Ql
il

= {δ1..δd ∈ Ql−1

� il
k | δl = il mod k} (9)

From (9) one can see that the node Ql−1

� il
k is the parent of nodes Ql

il+c where

0 ≤ c ≤ k − 1. Formally, I-DAG =
(
VQ, EQ

)
, where:

VQ = {Ql
il
| 0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1}

EQ = {(Ql−1

� il
k , Q

l
il+c) | 1 ≤ l ≤ d, 0 ≤ c ≤ k − 1}

(10)

5 Note that we will interchangeably use the string notation and identifier notation
when convenient.

238 L.O. Alima, A. Ghodsi, and S. Haridi

Fig. 10. Fixed division of the space for k = 2, N = k3, Σ = {0, 1}

5.1.1 Fixed Division of the Space Illustrated
To illustrate the fixed division of the space, assume for the sake of simplicity, that
we have an identifier space of size N = 23. We regard this virtual space as a set of
strings of bits of length 3 (i.e. from 000 to 111 in this example)6. Then, the space
is systematically divided into k (in this illustration k = 2) parts at each step. The
result of this systematic division of the space is shown by the I-DAG depicted in
Figure 10.

Some comments are in order regarding the fixed I-DAG given in Figure 10.
At level 1 of this I-DAG, each peer in the system has the view that the whole
identifier space is divided into Q1

0 and Q1
1, where Q1

0 consists of all the strings of
length 3, that start with the symbol 0; and Q1

1 consists of all strings of length 3
that start with the symbol 1. So, Q1

0 and Q1
1 are the same for every peer present

in the system. Note that this is not the case for the relative division of the space.
At level 2, all the peers in one of the sub-sets that result from the first division,

have the same view of the composition of the sub-set they belong to. For example,
all the peers in Q1

0 have the same view that Q1
0 consists of Q2

0 and Q2
1, where

Q2
0 is the sub-set of all the identifiers of the form 00b3, b3 ∈ {0, 1} and Q2

1 is
the sub-set of all the identifiers of the form 01b3, b3 ∈ {0, 1}. By repeating the
above reasoning, we obtain that at level 3, all the sub-sets that consists of single
element each. More precisely, we have Q3

0 = {000}, Q3
1 = {001}, Q3

2 = {010},
Q3

3 = {011}, Q3
4 = {100}, Q3

5 = {101}, Q3
6 = {110}, and Q3

7 = {111}.

5.2 Deriving R-DAG(p)

In this section we present two alternative ways of building the virtual k−ary tree,
R-DAG(p) for a peer p. We name the first logarithmic-degree R-DAG(p) as the
size of the routing tables that are derived from it are in logarithmic order of the
number of peers in the system. We name the second constant-degree R-DAG(p)
as the size of the routing tables that are derived from it are of a constant size.

6 That is, the code symbols are taken from the alphabet {0, 1}

A Framework for Structured Peer-to-Peer Overlay Networks 239

5.2.1 Deriving Logarithmic Degree R-DAG(p)
The logarithmic-degree R-DAG(p) for a peer p is built such as to ensure that
one can reach any peer from p in at most logk(N) hops, while maintaining a
routing table of size in O(logk(N)). We first give the general principle, then we
illustrate by some examples.

Recall the definition of R-DAG(p), associated to a peer p, given in sub-
section 3.2.

The logarithmic-degree R-DAG(p) for an arbitrary peer p ∈ I has d + 1
levels. The root node, node at level 0, is denoted L0

0(p). At a level l (1 ≤ l ≤ d),
R-DAG(p) has kl nodes, denoted Ll

il
(p), where 0 ≤ il ≤ kl − 1.

The node Ll−1

� il
k (p) is the parent of nodes Ll

il+c(p) where 0 ≤ c ≤ k − 1.

Formally, R-DAG(p) =
(
VL, EL

)
, where:

VL = {Ll
il
(p) | 0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1}

EL = {(Ll−1

� il
k (p), L

l
il+c(p)) | 1 ≤ l ≤ d, 0 ≤ c ≤ k − 1}

(11)

We provide three alternative rules for defining Ll
il
(p), 0 ≤ l ≤ d, 0 ≤ il ≤ kl−1

at a peer p. All of the rules have in common that Ll
il
(p) = p whenever p ∈ Ql

il
.

Rule (12) states that the successor of the numerically smallest identifier in
node Ql

il
is taken as the responsible peer for Ll

il
(p), for a peer p.

Ll
il
(p) =

{
p if p ∈ Ql

il

succP(min(Ql
il
)) otherwise (12)

The advantage of Rule (13) is that the responsible peers are chosen in a
deterministic fashion. Therefore, techniques such as correction-on-use (see sub-
section 7.3) and correction-on-change (see sub-section 7.4) can be used. However,
the disadvantage of Rule (13) is that it will lead to imbalanced traffic load. The
reason for this is that the peers at level l in the virtual k−ary tree will have
an in-degree of 1

kl . To solve this problem, we suggest the use of Rule (13),
that uniformly distributes the choice of the responsible peers in a deterministic
fashion.

Ll
il
(p) =

{
p if p ∈ Ql

il

succP(min(Ql
il
)⊕ (p mod kd−l)) otherwise (13)

The deterministic nature of Rule (13) has the same advantages that were
mentioned for Rule (12). One disadvantage of Rule (13) is that all the responsible
peers are chosen in a deterministic fashion. Hence, there is no freedom of choosing
responsible peers according to some proximity metric.

To relax the restriction imposed by Rule (13), we suggest the use of Rule
(14). With this rule any peer whose identifier is in Ql

il
can be randomly chosen

as a responsible peer for Ll
il
(p), at a peer p, since all nodes in Ql

il
share the same

prefix. In case there is no peer with identifier in Ql
il

the successor of the smallest
identifier in Ql

il
is chosen as a responsible peer.

240 L.O. Alima, A. Ghodsi, and S. Haridi

Fig. 11. R-DAG(011) in a fully populated system built from I-DAG in Figure 10 using
Rule (12)

Fig. 12. R-DAG(001) in a system with P = {001, 011, 100, 110} built from I-DAG in
Figure 10 using Rule (13)

The advantage of this rule is that any proximity metric, such as the round-trip
time, can be used when choosing the responsible peer. The reader familiar with
peer-to-peer overlay networks such as Pastry [24] and Tapstry [28] can observe
that Rule (14) is exploited in these systems.

Ll
il
(p) =

⎧⎨⎩
p if p ∈ Ql

il

random(Ql
il
) elseif Ql

il
∩ P �= ∅

succP(min(Ql
il
)) otherwise

(14)

The Logarithmic-Degree Fixed Division of the Space Illustrated. Figure 11 shows
the R-DAG(011) in a fully populated system built from I-DAG in Figure 10
using Rule (12). In Figure 12 we show R-DAG(001) in a system with P =
{001, 011, 100, 110} built from I-DAG in Figure 10 using Rule (13). We illustrate
the use of Rule (12) in Figure 13, in a system with P = {001, 011, 101, 110} built
from I-DAG in Figure 10.

A Framework for Structured Peer-to-Peer Overlay Networks 241

Fig. 13. R-DAG(101) in a system with P = {001, 011, 101, 110} built from I-DAG in
Figure 10 using Rule (12)

5.2.2 Deriving Constant Degree R-DAG(p)
Our work on deriving constant-degree R-DAG is an ongoing work. We here
report our preliminary result. The constant-degree R-DAG(p) for an arbitrary
p, is built from a fixed I-DAG.

The constant-degree R-DAG(p) for an arbitrary peer p ∈ I has d+ 1 levels.
The root node, node at level 0, is denoted C0

0 (p). At a level l (1 ≤ l ≤ d),
R-DAG(p) has kl nodes, denoted Cl

il
(p), where 0 ≤ il ≤ kl − 1.

The node Cl−1

� il
k (p) is the parent of nodes Cl

il+c(p) where 0 ≤ c ≤ k − 1.

Formally, R-DAG(p) =
(
VC , EC

)
, where:

VC = {Cl
il
(p) | 0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1}

EC = {(Cl−1

� il
k (p), C

l
il+c(p)) | 1 ≤ l ≤ d, 0 ≤ c ≤ k − 1}

(15)

In the following we show how Cl
il
(δ1...δd) (0 ≤ l ≤ d, 0 ≤ il ≤ kl − 1) is

derived from the I-DAG in a system where |P| = |I| = N .

Cl
il
(δ1...δd)=

{
δ1...δd if l= 0 ∧ i0 = 0
{φ2...φdψ | φ1...φd ∈ Cl−1

� il
k (δ1...δd), ψ = il mod k} otherwise

(16)

The Constant-Degree Fixed Division of the Space Illustrated. Figure 15 shows
the R-DAG(21) in a fully populated system built from I-DAG shown in Figure 14

5.3 Deriving Routing Tables

We now show how to build the routing table for an arbitrary peer p assuming
that the virtual k−ary tree, R-DAG(p), associated to a peer p is known. First, the
derivation of the routing tables for the logarithmic-degree R-DAG(p) is shown.
Thereafter the equivalent for the constant-degree R-DAG(p) is shown.

242 L.O. Alima, A. Ghodsi, and S. Haridi

Fig. 14. I-DAG of a system where d = 2, and Σ = {0, 1, 2}

Fig. 15. R-DAG(21) in a fully-populated system built from I-DAG in Figure 14

5.3.1 Deriving the Routing Tables for the Logarithmic-Degree
R-DAG(p)
To build the routing table for a peer p the principle is to move from the root
node of I-DAG level by level down to the leaf node, Qd

ip
, that contains p. Let

Q0
i0
· · ·Qd

id
be the path from the root node Q0

0 to the leaf node Qd
ip

. Peer p will
maintain a pointer to all the k immediate children of L0

i0
(p), · · · , Ld−1

id−1
(p).

Formally, let L = {1, · · · , d}, K = {0, · · · , k − 1}. The routing table Rtp of a
peer p is a function of type L ×K→ P defined as Rtp(l,m) = Ll

k∗il−1+m(p).
The size of the resulting routing table at a peer p is (k − 1)d. The factor

(k − 1) in this expression is due to that at each level l ∈ L peer p has a pointer
to itself.

Routing Tables for the Logarithmic-Degree R-DAG(p) Illustrated. We will now il-
lustrate how routing tables are constructed for the logarithmic-degree R-DAG(p).
The routing table, Rt101, is constructed for a peer 101 with the R-DAG(101)
shown in Figure 13.

The path from the root to the leaf node containing 101 in I-DAG is Q0
0, Q

1
1,

Q2
2, Q

3
5. Hence, the Rt101 will contain a pointer to all the k immediate children

of each node L0
0(101), L1

1(101), L2
2(101). As a consequence, Rt101(1, 0) = 001,

Rt101(1, 1) = 101, Rt101(2, 0) = 101, Rt101(2, 1) = 110, Rt101(3, 0) = 101, and
Rt101(3, 1) = 101. The routing table is illustrated by Figure 16.

A Framework for Structured Peer-to-Peer Overlay Networks 243

Level Interval Responsible
1 [000 · · · 011] 001

[100 · · · 111] 101
2 [100 · · · 101] 101

[110 · · · 111] 110
3 [100] 101

[101] 101

Fig. 16. The routing table for peer 101 derived from R-DAG(101) shown in Figure 13

Level Interval Responsible
1 [00 · · · 02] 10

[10 · · · 12] 11
[20 · · · 22] 12

Fig. 17. The routing table for peer 21 derived from R-DAG(21) shown in Figure 15

5.3.2 Deriving the Routing Tables for the Constant-Degree
R-DAG(p)
In the constant-degree R-DAG(p) each peer will only maintain pointers to k
other peers, namely all the k immediate children of the root node, C0

0 (p) for a
peer p.

Formally, let K = {0, · · · , k − 1}. The routing table Rtp of a peer p is a
function of type K → P defined as Rtp(k) = C1

k(p).

Routing Tables for the Constant-Degree R-DAG(p) Illustrated We now illustrate
how routing tables are constructed for the constant-degree R-DAG(p). The rout-
ing table, Rt21, is constructed for a peer 21 with the R-DAG(21) shown in
Figure 15.

Peer 21 maintains a pointer to all the k immediate children of node C0
0 (21).

Consequently, Rt21(0) = 10, Rt21(1) = 11, Rt21(2) = 12. The routing table is
illustrated by Figure 17

6 Local Atomic Operation for Joins and Leaves

Given that the k−ary structuring strategy and its associated concepts of relative
and fixed division of the space, we now know how to build efficient structured
overlay networks. Up to now, the story is only partial, because it does not involve
the joining nor the departures of peer. How to deal with joins and leaves oper-
ation such as to ensure strong guarantees? The local atomic principle presented
in this section serves for this.

244 L.O. Alima, A. Ghodsi, and S. Haridi

6.1 Join

We have assumed that the virtual identifier space is a ring. Hence, a join by
a peer n amounts to insertion of n between two existing peers in the case of
non-trivial networks, such as the one consisting with only one peer.

Due to high dynamism, several peers with consecutive identifiers might at-
tempt to join simultaneously. So, if not done properly, such concurrent inser-
tions might lead to undesirable situations such as false lookup failure, in which
the system returns a message saying that an item is not present in the system
while the item is actually there. Our simulation-based study of systems such as
Chord [25, 26] that use very “weak” join protocol, can have significant number
of false lookup failures when compared to our DKS system in which local atomic
join protocol is used.

The main idea behind local atomic join is to ensure that in between any pair
of peers currently in the system, there is at most one peer that is inserted at
a time. This requires, assuming fault-free environment, a tight synchronization
between the joining peer and the pair of peers between which the joining peer
is going to be inserted. When fault-tolerance is considered, the number of peers
involved in a local atomic join grows with the size of the immediate neighbors
that peer maintains.

6.2 Leave

As for the join, when a peer wishes to (cooperate when) leaving the system,
some synchronization is required. Otherwise, a high level of inconsistency might
result.

In most structured peer-to-peer overlay networks, leaves and failures are given
the same semantics. This is probably due to some simplification, as it implies that
the same transition rule applies for both the leave and the failure. However, we
think that these two operations should be given distinct semantics. We consider
a leave operation as a “cooperative departure”, and a failure is merely a “non-
cooperative departure”. Hence, to avoid significant amount of inconsistency when
a peer leaves the system, we suggest that at any time, in between two consecutive
peers, at most one peer departs. Achieving this requires the use of local atomic
operation. Again, the number of involved peers depends on the level of guarantees
targeted by the system.

7 Techniques for Maintaining Structured Overlay
Networks

In this section, we discuss some of the existing techniques for maintaining struc-
tured overlay networks.

7.1 Periodic Stabilization

We call periodic stabilization the technique that consists of running, periodically,
separate routines for correcting routing information that each peer maintains.

A Framework for Structured Peer-to-Peer Overlay Networks 245

Most of the existing peer-to-peer infrastructures use this technique. For instance,
it is used in systems such as Chord [25, 26], CAN [23] and Pastry [24].

The idea here is that each peer periodically checks its neighbors, to detect any
change that occurs in the vicinity of the checking peer. In Chord, this is done by
periodically running the stabilize and the fix finger sub-routines. This technique
has the advantage that changes can be detected quickly. However, the cost of
doing this periodical checking can be very high. An immediate observation that
one can make is that in systems using this technique, there is an unnecessary
bandwidth consumption when the system is frequently used but the dynamism
in the system is low.

7.2 Adaptive Stabilization

As mentioned in the previous sub-section, periodic stabilization induces unnec-
essary bandwidth consumption in periods of low dynamism. To overcome this
problem, an alternative approach is what we call adaptive stabilization, in which
the rate of stabilization is tuned depending on some observed conditions or
parameters, as suggested in [20]. In [20], what we here call adaptive stabiliza-
tion is termed self-tuning, and requires some estimate of the system size and
the failure rate. Intuitively, the adaptive stabilization technique might help re-
ducing unnecessary bandwidth consumption. However, it is not yet clear what
parameters are to be observed to effectively tune the probing rate. More impor-
tantly, how to make these observations is currently not well understood, given
the large scale nature and the high dynamism of the targeted systems. Never-
theless, the research on adaptive stabilization show the importance of building
systems that self-adapt to observed and current behaviors. Correction-on-use
and correction-on-change presented in the following sub-sections provide this
self-adaption without the need for separate sub-routines to be run periodically.

7.3 Correction-on-Use

Periodic stabilization is expensive and induces unnecessary bandwidth consump-
tion. To overcome this problem an alternative approach, correction-on-use, is
proposed in [2]. The idea here is to take advantage of the use of the overlay
network in order to let it self-organizes in face of changes.

When a peer n joins a DKS network, it receives approximate routing informa-
tion, that is not necessarily accurate. This routing information becomes accurate
over time when the system is used. To achieve this convergence, two ideas are
used: (i) whenever a peer receives a message from another peer, the receiving
peer adapts itself to account the presence of the sender. (ii) whenever a peer
n sends message to another peer n′, peer n embeds some information about its
current “local view” of the network. This local view is accurate thanks to the em-
bedding of the k−ary trees. The receiving peer n′ can then precisely determine
whether the sender n had a correct view at the sending time. If not, a badpointer
notification is sent back to peer n. The notification message carries the identifier
of a candidate peer for correction. Upon receipt of such a notification, the sender
peer n corrects itself.

246 L.O. Alima, A. Ghodsi, and S. Haridi

If the ratio of the use (traffic injected into the system) over the dynamism of
the system is high enough, the overlay network converges to a legitimate config-
uration. The main advantage of the correction-on-use is that it completely elim-
inates unnecessary bandwidth consumption. Each peer pays for what it needs.
However, if the ratio of the traffic injected into the system over the dynamism
is not sufficiently high, the convergence of the overlay network to legitimate
configuration is slowed down.

7.4 Correction-on-Change

The correction-on-use technique presented in the previous section is useful as it
eliminates unnecessary bandwidth consumption under the assumption that the
traffic injected into the system is high enough for corrections to take place.

However, in some usage scenarios, it cannot be guaranteed that the traffic is
high enough. For those scenarios we combine correction-on-use with a technique
we call correction-on-change [12]. In the correction-on-change technique, when-
ever a change is detected, all peers that depend on the peer where the change
occurred are corrected. We call the set of peers that depend on a given peer p, the
set of dependent peers of p. A peer p is dependent on another peer p′ if and only
if peer p′ should be in the routing table of peer p in legitimate configurations.

Whenever a peer p joins, leaves, or fails, the dependent peers of p are notified
such that they can adjust their routing information accordingly. To implement
this notification in an efficient manner, we use a restricted version of the cor-
recting broadcasting algorithms that are being developed by our team. Hence,
all dependent peers will be updated in parallel.

One consequence of correction-on-change is that it does not make leaves
equivalent to failures. Second, whenever a failure is detected, all dependent peers
are eagerly notified. Consequently, the system becomes more robust in the face
of high dynamism. At the same time, in accordance with correction-on-use, no
unnecessary bandwidth will be consumed during steady periods when the dy-
namism in the system is low. Full evaluation of this technique and its combination
with correction-on-use is to be reported in another paper.

8 Conclusion

In this paper, we presented a framework for understanding, analyzing and design-
ing structured peer-to-peer overlay networks. The proposed framework builds
upon the principle of embedding k−ary trees into the virtual identifier space.
Using the proposed framework, several variants of structured peer-to-peer over-
lay networks can be derived. The designer only need to decide which division
of the space to use and the rule for selecting responsible peers. Many existing
structured peer-to-peer overlay networks, such as [2, 26, 23, 24, 2, 1, 19, 16, 15], fit
the presented framework.

Interestingly, from our framework of embedding k−ary trees, we can derive
structured overlay networks of constant degree. In this paper, we briefly shown
one way to achieve this. We report further algorithmic and simulations-based

A Framework for Structured Peer-to-Peer Overlay Networks 247

studies of constant degree structured peer-to-peer overlay networks in a full
paper.

Given the embedding of k-ary trees, the proofs of correctness regarding log-
arithmic lookup length becomes trivial. Also, the understanding of the routing
process is simplified due to the nature of interval routing that the embedded trees
allow. Indeed, we show by this framework that routing in structured peer-to-peer
overlay networks is essentially an interval/compact routing process.

The embedding of k−ary trees also has an impact on the design of high
level services. For example, we have developed optimal one-to-many communi-
cation primitives [10, 13] based on the embedding of virtual k−ary trees on the
virtual space. The derived algorithms inherit correctness properties as well as
self-organization of the underlying substrate, which is a great advantage.

With the embedding of k−ary trees, a number of effective techniques for
maintaining overlay networks are made possible. The correction-on-use is one
such techniques. To increase robustness while keeping the maintenance cost low,
we combine correction-on-use with correction-on-change. Correction-on-change
eagerly corrects outdated routing pointers upon each change in the network.
As a result, of this combination of correction-on-use and correction-on-change,
unnecessary bandwidth consumption is avoided. In addition to these techniques,
we are also investigating suitable adaptive maintenance techniques that combine
effectively with correction-on-use and correction-on-change.

In this framework, we have been assuming that participating peers are ho-
mogeneous. In practice, this is not usually the case. We are therefore exploring
techniques that will make use of our framework while integrating heterogeneity
of peers.

References

1. Karl Aberer, P-Grid: A self-organizing access structure for P2P information sys-
tems, Lecture Notes in Computer Science 2172 (2001), 179–194.

2. L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, DKS(N, k, f): A Family of Low
Communication, Scalable and Fault-Tolerant Infrastructures for P2P Applications,
The 3rd International workshop CCGRID2003 (Tokyo, Japan), May 2003.

3. L. O. Alima, A. Ghodsi, P. Brand, and S. Haridi, Multicast in DKS(N, k, f) Over-
lay Networks, 7th International Conference on Principles of Distributed Systems
(OPODIS) (La Martinique, France), December 2003.

4. , Multicast in DKS(N, k, f) Overlay Networks, The 7th International Con-
ference on Principles of Distributed Systems (OPODIS’2003) (Berlin), Springer-
Verlag, 2004.

5. M. Amnefelt and J. Svenningsson, Keso - a scalable, reliable and secure read/write
peer-to-peer file system, 2004.

6. M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron, SCRIBE: A large-
scale and decentralised application-level multicast infrastructure, IEEE Journal on
Selected Areas in Communications (JSAC) (Special issue on Network Support for
Multicast Communications (2002).

248 L.O. Alima, A. Ghodsi, and S. Haridi

7. Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica,
Wide-area cooperative storage with CFS, Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01) (Chateau Lake Louise, Banff,
Canada), October 2001.

8. Frank Dabek, Ben Zao, Peter Druschel, John Kubiatowicz, and Ion Stoica, Towards
a common api for structured peer-to-peer overlays, Proceedings of the Second In-
ternational Workshop on Peer-to-Peer Systems, IPTPS, 2003.

9. S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi, A Framework for Peer-To-
Peer Lookup Services Based on k-ary Search, Tech. Report TR-2002-06, SICS, May
2002.

10. , Efficient Broadcast in Structured P2P Netwoks, 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

11. FreeNet, http://freenet.sourceforge.net, 2003.
12. A. Ghodsi, L. O. Alima, P. Brand, and S. Haridi, Increasing Robustness while

Minimizing Bandwidth Consumption in Structured Overlay Networks, Tech. Report
ISRN KTH/IMIT/LECS/R-03/07–SE, Kista Sweden, 2003.

13. A. Ghodsi, L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi, Self-correcting
broadcast in distributed hash tables, Parallel and Distributed Computing and Sys-
tems (PDCS’2003) (Calgary), ACTA Press, 2003.

14. Gnutella, http://www.gnutella.com, 2003.
15. N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, SkipNet:

A Scalable Overlay Network with Practical Locality Properties, Fourth USENIX
Symposium on Internet Technologies and Systems (USITS) (Seattle, USA), March
2003.

16. F. Kaashoek and D. R. Karger, Koorde: A simple degree-optimal distributed hash
table, Proceedings of the Second International Workshop on Peer-to-Peer Systems,
IPTPS, 2003.

17. John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao, Oceanstore: An architecture for global-scale
persistent storage, Proceedings of the Ninth international Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
2000), November 2000.

18. D. Malki, M. Naor, and D. Ratajczak, Viceroy: A scalable and dynamic emula-
tion of the butterfly, Proceedings of the 21st ACM Symposium on Principles of
Distributed Computing, 2002.

19. Petar Maymounkov and David Mazires, Kademlia: A Peer-to-peer Information
System Based on the XOR Metric, The 1st Interational Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

20. Ratul Mahajan Miguel, Controlling the cost of reliability in peer-to-peer overlays,
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
03), 2003.

21. M. Naor and U. Wieder, A simple fault tolerant distributed hash table, Proceedings
of the Second International Workshop on Peer-to-Peer Systems, IPTPS, 2003.

22. B. Clifford Neumann, Scale in distributed systems, pp. 463–489, IEEE Computer
Society, Los Alamitos, CA, 1994.

23. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker,
A Scalable Content Addressable Network, Tech. Report TR-00-010, Berkeley, CA,
2000.

A Framework for Structured Peer-to-Peer Overlay Networks 249

24. A. Rowstron and P. Druschel, Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems, Lecture Notes in Computer Science
2218 (2001).

25. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, ACM SIGCOMM
2001 (San Deigo, CA), August 2001, pp. 149–160.

26. , Chord: A Scalable Peer-to-Peer Lookup Service for In-
ternet Applications, Tech. Report TR-819, MIT, January 2002,
http://www.pdos.lcs.mit.edu/chord/papers/chord-tn.ps.

27. G. Tel, Introduction to distributed algorithms, Cambridge University Press, 1994,
ISBN 0 521 47069 2.

28. Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph., Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Routing, U. C. Berkeley
Technical Report UCB//CSD-01-1141, April 2000.

Verifying a Structured Peer-to-Peer
Overlay Network: The Static Case�

Johannes Borgström1, Uwe Nestmann1,
Luc Onana2,3, and Dilian Gurov2,3

1 School of Computer and Communication Sciences, EPFL, Switzerland
2 Department of Microelectronics and Information Technology,

KTH, Sweden
3 SICS, Sweden

Abstract. Structured peer-to-peer overlay networks are a class of algo-
rithms that provide efficient message routing for distributed applications
using a sparsely connected communication network. In this paper, we
formally verify a typical application running on a fixed set of nodes.
This work is the foundation for studies of a more dynamic system.

We identify a value and expression language for a value-passing CCS
that allows us to formally model a distributed hash table implemented
over a static DKS overlay network. We then provide a specification of the
lookup operation in the same language, allowing us to formally verify the
correctness of the system in terms of observational equivalence between
implementation and specification. For the proof, we employ an abstract
notation for reachable states that allows us to work conveniently up to
structural congruence, thus drastically reducing the number and shape
of states to consider. The structure and techniques of the correctness
proof are reusable for other overlay networks.

1 Introduction

In recent years, decentralised structured peer-to-peer (p2p) overlay networks
[OEBH03, SMK+01, RD01, RFH+01] have emerged as a suitable infrastructure
for scalable and robust Internet applications. However, to our knowledge, no
such system has been formally verified.

One commonly studied application is a distributed hash table (DHT), which
usually supports at least two operations: the insertion of a (key,value)-pair and
the lookup of the value associated to a given key. For a large p2p system (millions
of nodes), careful design is needed to ensure the correctness and efficiency of
these operations, both in the number of messages sent and the expected delay,
counted in message hops. Moreover, the sheer number of nodes requires a sparse
(but adaptable) overlay network.

� Supported by the EU-project IST-2001-33234 PEPITO (http://www.sics.se/pepito),
part of the FET-initiative Global Computing.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 250–265, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 251

The DKS System

In the context of the EU-project PEPITO, one of the authors is developing a de-
centralised structured peer-to-peer overlay network called DKS (named after the
routing principle distributed k-ary search), of which the preliminary design can
be found in [OEBH03]. DKS builds upon the idea of relative division [OGEA+03]
of the virtual space, which makes each participant the root of a virtual spanning
tree of logarithmic depth in the number of nodes.

In addition to key-based routing to a single node, which allows implementation
of the DHT interface mentioned above, the DKS system also offers key-based
routing either to all nodes in the system or to the members of a multicast group.
The basic technique used for maintaining the overlay network, correction-on-
use, significantly reduces the bandwidth consumption compared to its earlier
relatives such as Chord [SMK+01], Pastry [RD01] and Can [RFH+01].

Given these features, we consider the DKS system as a good candidate infras-
tructure for building novel large-scale and robust Internet applications in which
participating nodes share computing resources as equals.

Verification Approach

In this paper, we present the first results of our ongoing efforts to formally
verify DHT algorithms. We initially focus on static versions of the DKS system:
(1) they comprise a fixed number of participating nodes; (2) each node has access
to perfectly accurate routing information. As a matter of fact, already for static
systems formal arguments about their correctness turn out to be non-trivial.

We consider the correctness of the lookup operation, because this operation is
the most important one of a hash table: under all circumstances, the data stored
in a hash table must be properly returned when asked for. (The insert operation
is simpler to verify: the routing is the same as for lookup, but no reply to the
client is required.)

We analyse the correctness of lookup by following a tradition in process al-
gebra, according to which a reactive system may be formulated in two ways.
Assuming a suitably expressive process calculus at our disposal, we may on the
one hand specify the DHT as a very simple purely sequential monolithic pro-
cess, where every (lookup) request immediately triggers the proper answer by
the system. On the other hand, we may implement the DHT as a composition
of concurrent processes—one process per node—where client requests trigger
internal messages that are routed between the nodes according to the DKS al-
gorithm. The process algebra tradition says that if we cannot distinguish—with
respect to some sensible notion of equivalence—between the specification and
the implementation regarded as black-boxes from a client’s point of view, then
the implementation is correct with respect to the specification.

Contributions

While the verification follows the general approach mentioned above, we find the
following individual contributions worth mentioning explicitly.

252 J. Borgström et al.

1. We identify an appropriate expression and value language to describe the
virtual identifier space, routing tables, and operations on them.

2. We fix an asynchronous value-passing process calculus orthogonal to this
value language and give an operational semantics for it.

3. We model both a specification and an implementation of a static DKS-based
DHT in this setting.

4. We formally prove their equivalence using weak bisimulation. In detail:
– We formalise transition graphs up to structural congruence.
– We develop a suitable proof technique for weak bisimulation.
– We design an abstract high-level notation for states that allows us to

succinctly capture the transition graphs of both the implementation and
the specification up to structural congruence.

– We establish functions that concisely relate the various states of specifi-
cation and implementation.

– We show normalisation of all reachable states of the implementation in
order to establish the sought bisimulation.

The proofs are found in the long version of the paper, which is accessible
through http://lamp.epfl.ch/pepito.

Paper Overview

In Section 2 we provide a brief description of the DKS lookup algorithm, and
identify the data types and functions used therein. In Section 3, we introduce
a process calculus that is suitable for the description of DHT algorithms. More
precisely, we may both specify and implement a DKS-based DHT in this calculus,
as we do in Section 4. Finally, in Section 5 we formally prove that DKS allows to
correctly implement the lookup function of DHTs by establishing a bisimulation
containing the given specification and implementation.

Related Work

To our knowledge, no peer-to-peer overlay network has yet been formally veri-
fied. That said, papers describing such algorithms often include pseudo-formal
reasoning to support correctness and performance claims.

Previous work in using process calculi to verify non-trivial distributed algo-
rithms includes, e.g., the two-phase commit protocol [BH00] and a fault-tolerant
consensus protocol [NFM03]. However, in these algorithms, in contrast to overlay
networks, each process communicates directly with every other process.

Other formal approaches, for instance I/O-automata [LT98] have been used
to verify traditional (i.e., logically fully connected) distributed systems; we are
not aware, though, of any p2p-examples.

Future Work

Peer-to-peer algorithms in general are likely to operate in environments with high
dynamism, i.e., frequent joins, departures and failures of participating nodes.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 253

This case gives us increased complexity in three different dimensions: a more
expressive model, bigger algorithms and more complex invariants.

To cope with dynamism, structured peer-to-peer overlay networks are de-
signed to be stabilising. That is, if ever the dynamism within the system ceases,
the system should converge to a legitimate configuration. Proving, formally, that
such a property is satisfied by a given system is a challenge that we are currently
addressing in our effort to verify peer-to-peer algorithms.

The work present in this paper is a necessary foundation for the more chal-
lenging task of formal verification of the DKS system in a dynamic environment.

Conclusions

The use of process calculi lets us verify executable formal models of protocols,
syntactically close to their descriptions in pseudo-code. We demonstrate this
by verifying the DKS lookup algorithm. Our choice to work with a reasonably
standard process calculus, rather than the pseudo-code that these algorithms are
expressed in, made it only slightly harder to ensure that the model corresponded
to the actual algorithm but let us use well-known proof techniques, reducing the
total amount of work.

Other overlay networks, like the above-mentioned relatives of DKS, would
require changes to the expression language of the calculus as well as the details
of the correspondence proof; however, we strongly conjecture that the structure
of the proof would remain the same.

2 DKS

In this section we briefly describe the DKS system, focusing on the lookup al-
gorithm. More information about the DKS system can be found for instance
in [OEBH03, OGEA+03].

For the design of the DKS system, we model a distributed system as a set
of processes linked together through a communication network. Processes com-
municate by message passing and a process reacts upon receipt of a message;
i.e., this is an event-driven model. The communication network is assumed to
be (i) connected, each process can send a message directly to any other process
in the system; (ii) asynchronous, the time taken by the communication network
to forward a message to its destination can be arbitrarily long; (iii) reliable,
messages are neither lost nor duplicated.

2.1 The Virtual Identifier Space

For DKS, as for other structured peer-to-peer overlay networks [SMK+01, RD01],
participating nodes are uniquely identified by identifiers from a set called iden-
tifier space. As in Chord and Pastry, the identifier space for DKS is a ring of size
N that we identify with ZN , where we write Zn for {0, 1, · · · , n− 1}. To model
the ring structure, we let ⊕ and & be addition and subtraction modulo N , with

254 J. Borgström et al.

the convention that the results of modular arithmetic are always non-negative
and strictly less than the modulus. For simplicity, it is assumed that N = kd

for k > 1, d > 1, where k will be the branching factor of the search tree. We
work with a static system, with a fixed set of participating nodes I ⊆ ZN with
|I| > 1.

2.2 Assignment of Key-Value Pairs to Nodes

As part of the specification of a DHT, we assume that data items to be stored
into and retrieved from the system are pairs (key , val) ∈ N × N where the keys
are assumed to be unique. We model the data items currently in the system
as a partial function data : N ⇀ N. Using some arbitrary hashing function,
H : N → ZN , the key of a data item is hashed to obtain a key identifier H(key)
for the pair (key, val).

In DKS (as well as in Chord), a data item (key , val) is stored at the first node
succeeding H(key). That node is called the successor of H(key), and is defined as
suc(i) ∈ {j ∈ I | j & i = min{h & i | h ∈ I}}. Note that suc(·) is well-defined
since h & i = j & i iff h & j = 0. Dually, the (strict) predecessor of a node
i ∈ I is pre(i) ∈ {j ∈ I | j & i = max{h & i | h ∈ I}}. Local lookup at node
n is a partial function datan(j) := data(j) if suc(j) = n, i.e., returning the
value data(j) associated to a key j only on the node n responsible for the item
(key , val).

2.3 Routing Tables

The DKS system is built in a way that allows any node to reach any other node
in at most logk(N) hops under normal system operation. To achieve this, the
principle of relative division of the space [OGEA+03] is used to embed, at each
point of the identifier space, a complete virtual k-ary tree of height d = logk(N).
We let L := {1, 2, · · · , d} be the levels of this tree, where 1 is the top level (the
root). At a level l ∈ L, a node n has a view V l of the identifier space. The view
V l consists of k equal parts, denoted I l

i , 0 ≤ i ≤ k − 1, and defined below level
by level.

At level 1: V 1 = I10 I11 I12 · · · I1k−1, where I10 = [x1
0, x

1
1), I

1
1 = [x1

1, x
1
2),

· · · , I1k−1 = [x1
k−1, x

1
0), x1

i = n⊕ iN
k , for 0 ≤ i ≤ k − 1.

At level 2 ≤ l ≤ d: V l = I l
0 I l

1 I l
2 · · · I l

k−1, where I l
0 = [xl

0, x
l
1),

I l
1 = [xl

1, x
l
2), · · · , I l

k−1 = [xl
k−1, x

l−1
1), xl

i = n⊕ iN
kl , for 0 ≤ i ≤ k − 1.

To construct the routing table, denoted Rtn, of an arbitrary node n of a DKS
system we take for each level l ∈ L and each interval i at level l a pointer to the
successor of xl

i, as defined above.

Routing Table Example. As an example, consider an identifier space of size
N = 42, i.e., d = 2 and k = 4. Assume that the nodes in the system are
I := {0, 2, 5, 10, 13}. In this case, using the principle described above for building
routing table in DKS, we have that node 0 has the routing table in Figure 1.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 255

Level Interval Responsible Level Interval Responsible
1 [0, 4) 0 2 [0, 1) 0

[4, 8) 5 [1, 2) 2
[8, 12) 10 [2, 3) 2
[12, 0) 13 [3, 4) 5

5

13

0

2

10

Fig. 1. Routing table for node 0

Formally, the routing tables of the nodes are partial functions

Rtn(j, l) := suc
(

n⊕
(
N

kl

⌊
(j & n)kl

N

⌋))
if j & n < kd+1−l and l ≤ d,

where Rtn(j, l) is the node responsible for the interval containing j on level l
according to node n. We also define the lookup level for an identifier at a given
node as lvln(j) := d − 'logk(j & n)(, and let lookup in the routing table be
Rtn(j) := Rtn(j, lvln(j)), which is defined for all n, j.

2.4 Lookup in a Static DKS

The specification of lookup is common to all DHTs: A lookup for a key key at
a node n should simply return the associated data value (if any) to the user on
node n. Moreover, the system should always be available for new requests, and
the responses may be returned in any order.

In DKS, the lookup can be done either iteratively, transitively or recur-
sively. These are well-known strategies for resolving names in distributed sys-
tems [Gos91]. In this paper, we present a simplified version of the recursive
algorithm of DKS.

Briefly and informally, the recursive lookup in the DKS system goes as fol-
lows. When a DKS node n receives a request for a key key from its user, u, node
n checks if the virtual identifier associated to key is between pre(n) and n. If
so, node n performs a local lookup and returns the value associated to key to
the user. Otherwise, node n starts forwarding the request, such that it descends
through the virtual k-ary tree associated with node n until the unique node z

256 J. Borgström et al.

such that H(key) is between pre(z) and z is reached. We call z the manager of
key.

When the manager of key is reached, it does a local lookup to determine
the value associated with key. This value is returned, back-tracing the path
taken by the request. In order to do this, a stack is embedded in each internal
request message, such that at each step of the forwarding process, the node n′

handling the message pushes itself onto the stack. The manager z then starts
a “forwarding” of internal response messages towards the origin of the request.
Each such message carries the result of the lookup as well as the stack.

When a node n receives an internal response message, node n checks if the
stack attached to the message is empty. If not, the head of the stack determines
the next step in the “backwarding” of the message towards its origin. If the stack
is empty, then n was the origin of the lookup. Then node n returns the result of
the response to its user, u.

The back-tracing makes the response follow a “trusted path”, to route around
possible link failures, e.g., between the manager of the key and the originator
of the lookup. The stack also provides some fault-tolerance: If the node at the
head of the stack is no longer reachable, the nodes below can be used to return
the message.

A formal model of this lookup algorithm can be found in Section 4, using the
process calculus defined in Section 3.

3 Language

We use a variant of value-passing CCS [Mil89, Ing94] to implement the DKS
system described above. To separate unrelated features and allow for a simple
adaptation to the verification of other algorithms, we clearly distinguish three
orthogonal aspects of the calculus.

Values and Expressions: The values V are integers, lists in nil [] and cons
v1 :: v2 format and the “undefined value” ⊥. The expressions E contain some
standard operations on values, plus common DHT functions and DKS-specific
functions seen in Section 2.

We extend the domain and codomain of F ∈ {data, lvlv, datav, Rtv | v ∈ I}
to V by letting F (v) :=⊥ for the values v on which F was previously undefined.
We extend the domain of H to V by letting H take arbitrary values in ZN for
values not in N. Expressions are evaluated using the function J·K : E → V.

For boolean checks B, we have the matching construct e1 =e2 and an interval
check e1 ∈ (e2, e3] modulo N . Boolean checks are evaluated using the predicate
eb(·). Values and boolean checks are defined in Table 1, both J·K and eb(·) are
defined in Table 2. We do not use a typed value language, although the equiva-
lence result obtained in Section 5.2 intuitively implies that the implementation
is “as well-typed as” the specification.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 257

We use tuples ẽ of expressions (and other terms), where ẽ := e1, . . . , e|ẽ| that
may be empty, i.e., |ẽ| = 0. To evaluate a tuple of expressions, we write JẽK for
the tuple of values Je1K, . . . , Je|ẽ|K.

As a more compact representation of lists of values, we write [uṽ] for u :: [ṽ],
and also define last([v1, v2, · · · , vn]) := vn if n > 0.

Parallel Language: We use a polyadic value-passing CCS, with asynchronous
output and input-guarded choice. We assume that the set of names a, b ∈ N and
the set of variables x, y ∈ W are disjoint and infinite. The syntax of the calculus
can be found in Table 1.

As an abbreviation we write
∑

j∈J Gj for 0+Gj0 + Gj1 + · · · + Gjn and∏
j∈J Pj for 0 |Pj0 |Pj1 | · · · |Pjn

, where J = {ji | 0 ≤ i ≤ n} (J may be ∅).

Control Flow Structures: We use the standard if φ then P else Q and a
switch statement case eof {j �→ Pj | j ∈ S} for a more compact representation
of nested comparisons of the same value. In all case statements, we require
S ⊂ V to be finite.

To gain a closer correspondence to the method-oriented style usually used
when presenting distributed algorithms, we work with defining equations for
process constants A〈ẽ〉 rather than recursive definitions embedded in the process
terms. If a process constant A does not take any parameters, we write A for both
A〈〉 and A().

Table 1. Syntax

u, v ::= 0, 1, 2, · · · | [] | ⊥ | u :: u values V

e ::= u | x expressions E
| head(e) | tail(e) | e :: e (lists)
| data(e) | H(e) (global)
| lvlv(e) | datav(e) | Rtv(e) (local)

φ, ψ ::= e=e boolean tests B
| e ∈ (e, e] (interval check)

G ::= 0 input-guarded sums G
| a(x̃).P (input prefix)
| G + G (choice)

P, Q ::= G processes P
| a〈ẽ〉 (asynchronous output)
| P |P (parallel)
| (P) \ a (restriction)
| A〈ẽ〉 (process constant)
| if φ then P else P (if statement)
| case eof {j �→ Pj | j ∈ S} (case statement)

258 J. Borgström et al.

3.1 Semantics

The set of actions A % μ is defined as μ ::= τ | a ṽ | a ṽ. The channel of an
action, ch : A → N ∪ {⊥}, is defined as ch(τ) :=⊥, ch(a ṽ) := a and ch(a ṽ) :=
a. The variables x̃ are bound in a(x̃).P . Substitution of the values ṽ for the
variables x̃ in process P is written P [v1/x1 , . . . ,

vn/xn
] and performed recursively

on the non-bound instances of x̃ in P. We use a standard labelled structural
operational semantics with early input (see Table 2). To compute the values to be
transmitted, instantiate process constants and evaluate if and case statements
we use an auxiliary reduction relation > (see Table 2).

Structural congruence is a standard notion of equivalence (cf. [MPW92]) that
identifies process terms based on their syntactic structure. In a value-passing
language, it often includes simplifications resulting from the evaluation of “top-
level” expressions (cf. [AG99]). In our calculus, top-level evaluation is treated by
the reduction relation >, which is contained in the structural congruence.

Definition 1 (Structural Congruence). Structural congruence ≡ is the least
equivalence relation on P containing > and satisfying commutative monoid laws
for (P, | , 0) and (G, +, 0) and the following inference rules.

S-par
P1 ≡ P ′

1

P1 |P2 ≡ P ′
1 |P2

S-sum
G1 ≡ G′

1

G1 + G2 ≡ G′
1 + G2

S-res
P ≡ P ′

(P) \ a ≡ (P ′) \ a

Depending on the actual structural congruence rules at hand it is well known,
and can easily be shown, that structurally congruent processes give rise to the
“same” transitions (leading to again structurally congruent processes) according
to the operational semantics. Thus, transitions can be seen as a relation between
congruence classes of processes. To simplify descriptions of the behaviour of
processes, we define a related notion where we instead work with representatives
for the congruence classes.

Definition 2 (Transition Graph Up to Structural Congruence). A tran-
sition graph up to structural congruence is a labelled relation ≡� ⊆ Q×A×Q for
Q ⊆ P such that for all Q ∈ Q we have that

– If Q
μ−→ P ′, there is Q′ such that Q

μ

≡� Q′ and P ′ ≡ Q′.

– If Q
μ

≡� Q′, there is P ′ such that Q
μ−→ P ′ and P ′ ≡ Q′.

We say that ≡� is a transition graph up to ≡ for Q if Q ∈ Q.

According to this definition, it is sufficient to include just one representative
for the congruence class of a derivative; however, one may include several.

Weak bisimulation is a standard equivalence [Mil89] identifying processes
with the same externally observable reactive behaviour, ignoring invisible inter-
nal activity. We define this process equivalence with respect to a general labelled
transition system; this allows us to interpret the notion also on transition graphs
up to ≡.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 259

Table 2. Semantics

Expression evaluation and boolean evaluation are defined as follows:

JeK :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v if e = v ∈ V
v1 if e = head(e′) and Je′K = v1 :: v2

v2 if e = tail(e′) and Je′K = v1 :: v2

v1 :: v2 if e = e1 :: e2 and Je1K = v1, Je2K = v2

F(Je′K) if e = F(e′) and F ∈ {data, H, lvlv, datav, Rtv | v ∈ I}
⊥ if otherwise

eb(e1 =e2) is true iff Je1K = Je2K �=⊥
eb(e1 ∈ (e2, e3]) is true iff JeiK = ni ∈ N for i ∈ {1, 2, 3}

and 0 < n1 � n2 ≤ n3 � n2

The (top-level) reduction relation > is the least relation on P satisfying:

1. a〈ẽ〉 > a〈ṽ〉 if JẽK = ṽ.

2. A〈ẽ〉 > P [v1/x1 , . . . ,vn/xn] if A(x̃) def= P , |ẽ| = |x̃| = n and JẽK = ṽ.
3. if φ then P else Q > P if eb(φ).
4. if φ then P else Q > Q if ¬ eb(φ).
5. case eof {j �→ Pj | j ∈ S} > Pv if JeK = v ∈ S.

The structural operational semantics are given by the following inference rules, where
the symmetric versions of Com-L, Par-L and Sum-L have been omitted.

(in)
a(x̃).P a ṽ−−→ P [v1/x1 , . . . ,vn/xn]

if |ṽ| = |x̃| (out)
a〈ṽ〉 a ṽ−−→ 0

(com-L)
P

a ṽ−−→ P ′ Q
a ṽ−−→ Q′

P |Q τ−→ P ′ |Q′ (par-L)
P

μ−→ P ′

P |Q μ−→ P ′ |Q

(sum-L)
G1

a ṽ−−→ P ′

G1 + G2
a ṽ−−→ P ′ (res)

P
μ−→ P ′

(P) \ a
μ−→ (

P ′) \ a
if a �= ch(μ)

(red)
P > Q Q

μ−→ Q′

P
μ−→ Q′

Definition 3 (Weak Bisimulation). If � ⊆ P×A×P then a binary relation
S ⊆ P×P is a weak �-bisimulation if
whenever P S Q and P

μ� P ′ there exists Q′ such that P ′ S Q′ and

– if μ = τ then Q
τ�∗ Q′;

– if μ �= τ then Q(
τ�∗)

μ� (
τ�∗)Q′,

and conversely for the transitions of Q.

260 J. Borgström et al.

The notion usually deployed in process calculi is weak −→-bisimilarity: P is
weakly −→-bisimilar to Q, written P ≈ Q, if there is a weak −→-bisimulation S
with P S Q1.

Next, we use the concept of ≡�-bisimilarity as simple proof technique: two
processes are weakly −→-bisimilar if they are weakly ≡�-bisimilar.

Proposition 1. If S is a weak ≡�-bisimulation, then ≡S≡ is a weak −→-
bisimulation.

4 Specification and Implementation

We now use the process calculus defined in Section 3 to specify and implement
lookup in the DKS system.

Specification. In the specification process Spec, lookup requests and results are
transmitted on indexed families of names request i, responsei ∈ N , where the
index corresponds to the node the channel is connected to. The request i channels
carry a single value: the key to be looked up. The responsei channels carry the
key and the associated data value.

Spec
def=
∑
i∈I

request i(key).(responsei〈key , data(key)〉 |Spec).

Implementation. The process implementing the DKS system, defined in Table 3,
consists of a collection of nodes. A node Nodei is a purely reactive process that re-
ceives on the associated request i, req i and respi channels, and sends on responsei,
reqj and respj for j ∈ range(Rti(·)). The req i channels carry three values: the
key to be looked up, a stack specifying the return path for the result, and the
current lookup level. The respi channels carry the key, the found value and the
remaining return path.

Requests, i.e., messages on channels request i and req i, are treated by the
subroutine Reqi , which decides whether to respond to the message directly or to
route it towards its destination. This decision is naturally based on whether it is
itself responsible for the key searched for, as defined in Section 2; in this case, it
responds with the value of a local lookup. Responses, i.e., messages on channels
respi, are treated by the subroutine Respi , which decides to whom precisely to
pass on the response; depending on the call stack, it either returns itself the
result of a query to the application, or it passes on the response to the node
from whom the request arrived earlier on.

The implementation of the static DKS system, Impl, is then simply the par-
allel composition of all nodes, with a top-level restriction on the channels that
are not present in the DHT API. We use variables key , stack , value, level ∈ W.

1 The knowledgeable reader may note that although we find ourselves within a calculus
with asynchronous message-passing, we use a standard synchronous bisimilarity,
which is known to be strictly stronger than the notion of asynchronous bisimilarity.
However, our correctness result holds even for this stronger version.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 261

Table 3. DKS Implementation

Nodei
def= request i(key).(Nodei |Reqi〈key , []〉)
+ req i(key , stack , level).(Nodei |Reqi〈key , stack〉)
+ respi(key , value, stack).(Nodei |Respi〈key , value, stack〉)

Reqi(key , stack) def= if H(key) ∈ (pre(i), i]
then Respi〈key , datai(key), stack〉
else case Rti(H(key))

of {j �→ reqj〈key , i :: stack , lvli(H(key))〉 | j ∈ I}

Respi(key , value, stack) def= if stack =[]
then responsei〈key , value〉
else case head(stack)

of {j �→ respj〈key , value, tail(stack)〉 | j ∈ I}

Impl
def=

(∏
i ∈I

Nodei

)
\ {reqi, respi | i ∈ I}

5 Correctness

Our correctness result is that the specification of lookup is weakly bisimilar
to its (non-diverging) implementation in the DKS system. We show this by
providing a uniform representation of the derivatives of the specification and
the implementation, and their transition graphs up to ≡, allowing us to directly
exhibit the bisimulation.

5.1 State Space and Transition Graph

Since nodes are stateless (in the static setting), we only need to keep track
of the messages currently in the system. For this we will use multisets, with
the following notation: A multiset M over a set M is a function with type
M→ N. By spt(M) := {x ∈ M | M(x) �= 0}, we denote the support of M . We
write 0 for any multiset with empty support. We can add and remove items by
S + a := {a �→ S(a)+1} ∪ {x �→ S(x) | x ∈ dom(S) \ {a}} when a ∈ dom(S) and
S−a := {a �→ S(a)−1}∪{x �→ S(x) | x ∈ dom(S)\{a}}, where S−a is defined
only when a ∈ spt(S). More generally, we define the sum of two multisets with
the same domain as S + T := {x �→ S(x)+T (x) | x ∈ dom(S)}.

Specification. The states of the lookup specification are uniquely determined by
the undelivered responses. To describe this state space, we define families of
process constants Responsesα and Specα, where α ranges over multisets with
domain I × V and finite support. We write t < n for t ∈ Zn .

Responsesα
def=

∏
(i,kv)∈ spt(α)

∏
t<α(i,kv)

responsei〈kv , data(kv)〉

262 J. Borgström et al.

Let Specα := Responsesα|Spec. Note that Spec ≡ Spec0.

Lemma 1. Spec0 has the following transition graph up to ≡.

1. Specα

requesti kv

≡≡≡≡≡≡≡� Specα+(i,kv) if i ∈ I and kv ∈ V

2. Specα

responsei kv ,data(kv)

≡≡≡≡≡≡≡≡≡≡≡≡≡≡� Specα−(i,kv) if (i, kv) ∈ spt(α)

Implementation. For the implementation, we also have to keep track of respi and
req i messages and the values that can be sent in them. Since the routing tables
are correctly configured, there is a simple invariant on the parameters of the
req i〈kv , L, m〉 messages in the system: Such messages are either sent to the node
responsible for kv , or to the node responsible for the interval containing H(kv)
on level m as discussed in Section 2. To capture this invariant we let list[I] :=
{[i1, i2, · · · , in] | ij ∈ I ∧ n ∈ N}, and define R ⊂ I × V × list[I]× Zd+1 as

R := {(i, kv , L, m) | L �= [] ∧
(suc(H(kv)) = i ∨ eb(H(kv) ∈ (i, i⊕ kd−m & 1]))}.

To model the internal messages in the DKS system, we define families of
process constants Reqsβ and Respsγ where α is as above, β ranges over multisets
with domain R and finite support and γ ranges over multisets with domain
I × V × list[I] and finite support as follows.

Reqsβ
def=

∏
(i,kv ,L,m)∈ spt(β)

∏
t<β(i,kv ,L,m)

req i〈kv , L, m〉

Respsγ
def=

∏
(i,kv ,L)∈ spt(γ)

∏
t<γ(i,kv ,L)

respi〈kv , data(kv), L〉

The behaviour of the implementation is captured by the constants Implα,β,γ .

Implα,β,γ
def=

(
Responsesα|Reqsβ |Respsγ |

∏
i∈I

Nodei

)
\ {req i, respi | i ∈ I}

Note that Impl ≡ Impl0,0,0.

Lemma 2. Impl0,0,0 has the following transition graph up to ≡.

1. Implα,β,γ

requesti kv

≡≡≡≡≡≡≡� Implα+(i,kv),β,γ

if i ∈ I and eb(H(kv) ∈ (pre(i), i])

2. Implα,β,γ

requesti kv

≡≡≡≡≡≡≡� Implα,β+(Rti (H(kv)),kv ,[i],lvli (H(kv))),γ

if i ∈ I and ¬
(

eb(H(kv) ∈ (pre(i), i])
)

3. Implα,β,γ

responsei kv ,data(kv)

≡≡≡≡≡≡≡≡≡≡≡≡≡≡� Implα−(i,kv),β,γ

if (i, kv) ∈ spt(α)

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 263

4. Implα,β,γ

τ
≡� Implα,β−(i,kv ,h::L,m),γ+(h,kv ,L)

if (i, kv , h::L, m) ∈ spt(β) and eb(H(kv) ∈ (pre(i), i])

5. Implα,β,γ

τ
≡� Implα,β−(i,kv ,L,m)+(Rti (H(kv)),kv ,i::L,lvli (H(kv))),γ

if (i, kv , L, m) ∈ spt(β) and ¬
(

eb(H(kv) ∈ (pre(i), i])
)

6. Implα,β,γ

τ
≡� Implα,β,γ−(i,kv ,h::L)+(h,kv ,L)

if (i, kv , h::L) ∈ spt(γ)

7. Implα,β,γ

τ
≡� Implα+(i,kv),β,γ−(i,kv ,[])

if (i, kv , []) ∈ spt(γ)

Having found the transition graphs of both the specification and the imple-
mentation up to structural congruence, we restrict ourselves to working with
this transition system.

Definition 4. Let ≡� be the union of the relations in the statements of Lemma 1
and Lemma 2.

Note that ≡� is as transition graph up to structural congruence for both Spec0

and Impl0,0,0.

5.2 Bisimulation

To relate the state spaces of the specification and the implementation, we define
two partial functions Treq : R⇀ (I ×N) and Tresp : (I ×N× list[I]) ⇀ (I ×N)
that map the parameters of req and resp messages, respectively, to those of the
corresponding response messages as follows.

Treq(i, kv , L, m) := (last(L), kv)

Tresp(i, kv , L) :=

{
(last(L), kv) if L �= []
(i, kv) if L = []

Note that Treq is well-defined since dom(Treq) = R, thus L �= []. We then
lift these functions to the respective multisets of type β and γ.

T̂req(β) :=
∑

x∈spt(β)

{Treq(x) �→ β(x) }

T̂resp(γ) :=
∑

x∈spt(γ)

{Tresp(x) �→ γ(x) }

Here
∑

denotes indexed multiset summation. Finally, we abbreviate the ac-
cumulated expected visible responses due to pending requests by:

T̂(α,β, γ) := α + T̂req(β) + T̂resp(γ)

The implementation has a well-defined behaviour on internal transitions, as
the following two lemmas show. First, internal transitions does not change the
equivalence classes under the equivalence induced by the T̂-transformation.

264 J. Borgström et al.

Lemma 3. If Implα,β,γ

τ
≡� Implα′,β′,γ′ then T̂(α,β, γ) = T̂(α′,β′, γ′).

Next, we investigate the behaviour of the implementation when performing
sequences of internal transitions. We prove that Implα,β,γ is strongly normalizing
on τ -transitions: it may always reduce to Impl

̂T(α,β,γ),0,0, and does so within a
bounded number of τ -steps.

Lemma 4 (Normalization). For all Implα,β,γ , we have that

1. Implα,β,γ �
τ
≡� iff spt(β) = ∅ = spt(γ).

2. there exists n ∈ N such that whenever Implα,β,γ

τ
�k I, then k ≤ n.

3. if Implα,β,γ

τ
�∗ I �

τ
≡�, then I = Impl

̂T(α,β,γ),0,0.

4. Implα,β,γ

τ
�∗ Impl

̂T(α,β,γ),0,0.

We now proceed to the main result of the paper, stating that the reachable
states of the specification and of the implementation—in each case captured
by the respective transition systems up to structural congruence—are precisely
related.

Theorem 2. The Binary Relation.

{ (Spec
̂T(α,β,γ), Implα,β,γ) | Implα,β,γ is defined }

is a weak ≡�-bisimulation.

Corollary 3. Spec ≈ Impl.

Proof. Since Spec ≡ Spec0 and Impl ≡ Impl0,0,0, this follows from Theorem 2
and Proposition 1.

This equivalence does not by itself guarantee that the implementation is free
from live-locks since weak bisimulation, although properly reflecting branching
in transition systems, is not sensitive to the presence of infinite τ -sequences.
However, their absence was proven in Lemma 4(2).

References

[AG99] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols:
The Spi Calculus. Information and Computation, 148(1):1–70, 1999.

[BH00] M. Berger and K. Honda. The Two-Phase Commitment Protocol in
an Extended pi-Calculus. In L. Aceto and B. Victor, eds, Proceedings
of EXPRESS ’00, volume 39.1 of ENTCS. Elsevier Science Publishers,
2000.

[Gos91] A. Goscinski. Distributed Operating Systems, The Logical Design.
Addison-Wesley, 1991.

[Ing94] A. Ingólfsdóttir. Semantic Models for Communicating Processes with
Value-Passing. PhD thesis, University of Sussex, 1994. Available as
Technical Report 8/94.

Verifying a Structured Peer-to-Peer Overlay Network: The Static Case 265

[LT98] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Au-
tomata. Technical Report MIT/LCS/TM 373, MIT Press, Nov. 1998.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MPW92] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes,

Part I/II. Information and Computation, 100:1–77, Sept. 1992.
[NFM03] U. Nestmann, R. Fuzzati and M. Merro. Modeling Consensus in a Process

Calculus. In R. Amadio and D. Lugiez, eds, Proceedings of CONCUR
2003, volume 2761 of LNCS. Springer, Aug. 2003.

[OEBH03] L. Onana Alima, S. El-Ansary, P. Brand and S. Haridi. DKS (N, k, f): A
Family of Low Communication, Scalable and Fault-Tolerant Infrastruc-
tures for P2P Applications. In CCGRID 2003, pages 344–350, 2003.

[OGEA+03] L. Onana Alima, A. Ghodsi, S. El-Ansary, P. Brand and S. Haridi. De-
sign Principles for Structured Overlay Networks. Technical Report ISRN
KTH/IMIT/LECS/R-03/01–SE, KTH, 2003.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Nov. 2001.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker. A Scal-
able Content Addressable Network. In SIGCOMM 2001, San Diego, CA.
ACM, 2001.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
In SIGCOMM 2001, San Diego, CA. ACM, 2001.

A Physics-Style Approach to Scalability of
Distributed ystems�

Erik Aurell1,2 and Sameh El-Ansary2

1 Swedish Institute of Computer Science, Kista, Sweden
2 Department of Physics, KTH-Royal Institute of Technology,

Stockholm, Sweden
{sameh, eaurell}@sics.se

Abstract. Is it possible to treat large scale distributed systems as phys-
ical systems? The importance of that question stems from the fact that
the behavior of many P2P systems is very complex to analyze analyti-
cally, and simulation of scales of interest can be prohibitive. In Physics,
however, one is accustomed to reasoning about large systems. The limit
of very large systems may actually simplify the analysis. As a first ex-
ample, we here analyze the effect of the density of populated nodes in an
identifier space in a P2P system. We show that while the average path
length is approximately given by a function of the number of populated
nodes, there is a systematic effect which depends on the density. In other
words, the dependence is both on the number of address nodes and the
number of populated nodes, but only through their ratio. Interestingly,
this effect is negative for finite densities, showing that an amount of
randomness somewhat shortens average path length.

1 Introduction

In this paper, we propose a method for analyzing properties of large-scale dis-
tributed systems based on analogies with thermodynamics and statistical me-
chanics. That is, given a distributed system of size N exhibiting a property P, we
would like to know the behavior of P at system sizes N much greater than where
direct simulation is feasible. Particularly we would like to know on the one hand
if the description can in any way become simpler for large enough N , or if there
is a way to determine what is a ”sufficiently large N”, so that no simulation of
an even larger system is necessary, or is likely to reveal any new information.

Physics was the first science to encounter problems of this sort. The number
N of molecules in a macroscopic body, say a liter of water, is about 1027. On
the microscopic level, all substances are made of atoms and molecules of the
same basic type – different number of electrons, protons and neutrons – yet
large lumps of the same kind of atoms or molecules make up substances with

� This work is funded by the Swedish funding agency VINNOVA, PPC project and
the European PEPITO and EVERGROW projects.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 266–272, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

S

A Physics-Style Approach to Scalability of Distributed ystems 267

distinct qualities which we can percieve. Those can be density, pressure (of a
gas at given density and temperature), viscocity (of a liquid), conductivity (of
a metal), hardness (of a solid), how sound and light do or do not propagate, if
the material is magnetic, and so on. Materials are important, indeed whole ages
of human history have been named after the dominant material at the time [1].

The first level of analysis in a physical system of many components, is to try
to separate intensive and extensive variables. Extensive variables are those that
eventually become proportional to the size of the system, such as total energy.
Intensive variables, such as density, temperature and pressure, on the other hand
becomes independent of system size. A description in terms of intensive variables
only is a great step forward, as it holds regardless of the size of the system, if
sufficiently large.

Further steps in a physics-style analysis may include identifying phases, in
each of which all intensive variables vary smoothly, and where the characteristics
of the system remain the same. This methodology was carried over to satisfia-
bility theory more than ten years ago. KSAT is the problem to determine if a
conjunction of M clauses, each one a disjunction of K literals out of N vari-
ables can be satisfied. Both M and N are extensive variables, while α = M/N ,
the average number of clauses per variable, is an intensive variable. For large
N , instances of KSAT fall into either the SAT or the UNSAT phase depend-
ing on whether α is larger or smaller than a threshold αc(K) [2, 3]. The order
of the phase transition, a statistical mechanics concept roughly describing how
abrupt the transition is, has been shown to be closely related to the average
computational complexity of large instances of KSAT with given values of K
and α [4, 5]. Recent advances include the introduction of techniques borrowed
from the physics of disordered systems, leading to an important new class of
algorithms, currently by far the best of large and hard SAT problems [6]. With-
out question, statistical mechanics have been proven to be very useful on very
challenging problems in theoretical computer science, and it can be hoped that
this will also be the case in the analysis and design of distributed systems.

2 The Physics-Style Analysis of Structured Overlays

We start our investigation by considering the area of Peer-To-Peer systems as
an example of large-scale distributed systems. The investigation is done using
the Chord system [7, 8] and familiarity of the reader to Chord concepts and
terminology is assumed.

The work reported in this paper can then be summarized by the three fol-
lowing methodological steps:

Step 1: Determination of Intensive Variables. Let N be the size of the
identifier space and P be the population, i.e. the number of nodes that are
uniformly distributed in the identifier space. We define the density (ρ) to be the
ratio P

N with a maximum value of 1 for a fully populated system. We will here
focus on the investigation of ρ as an intensive variable.

S

268 E. Aurell and S. El-Ansary

for N ∈ {27, 28, .., 214} do

for P ∈ {0.1 × N, 0.2 × N, .., 1.0 × N} do

1. Generate Chord(P,N)

2. Inject uniformly distributed P 2 lookups

3. Record the average lookup length over

the P 2 lookups, denoted < L(P, N) > or

equivalently < L(ρ, N) >
end

end

Fig. 1. The procedure for investigating the density (ρ = P
N

) as an intensive variable

Step 2: Looking for Characteristic Behavior. A key quantity of interest
in a P2P system built of DHTs is the average path length. Here we report the
dependency of the number of populated nodes, and the density in a series of
simulations of Chord. We will show that while the main behaviour is 0.5 log2 P ,
where P is the number of populated nodes, there is also a small residual term
that depends on the density only.

Step 3: Ideas This Can Give to P2P Systems. It is a curious fact that the
residual term alluded to above is negative. We call this curious, because if the
P populated nodes are regularly spaced in the circular geometry of the address
space of Chord, the average path length is exactly 0.5 log2 P , in other words
larger. Hence, we have as a result that randomization improves the performance
of P2P system built on DHT, even in static situation, with no peers leaving or
joining the system. We believe this may be of some conceptual importance, even
if the effect is small.

Further ideas are taken up in the Discussion and Results section below.

3 The Simulation Setup

Let Chord(P ,N) be an optimal Chord graph, where all the fingers of all nodes
are correctly assigned, our simulations follow the procedure illustrated in figure 1.

This procedure is repeated 10 times, with different random seeds, and the
results are averaged.

The simulations were implemented using the Mozart distributed program-
ming platform [9]. The total number of experiments performed was 800 that
were scheduled on a cluster of 16 machines at SICS.

4 Results

Given the set of experiments performed as explained in figure 1, we report the
results in a number of different ways.

First, as shown in figure 2, for a given set of P nodes, by placing them in
identifier spaces of different sizes, the path length is affected. In fact, the path
length decreases as the identifier space increases. The graph is based on a subset

269

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
3

3.5

4

4.5

5

5.5

N (Size of Identifier Space)

<
L(

N
,P

)>
 (

A
vg

. P
at

h
Le

ng
th

)

P= 102
P= 205
P= 410
P= 819
P=1638

Fig. 2. The effect of different identifier space sizes on systems of the same population

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

ρ (Density=P/N)

<
L(

ρ,
N

)>
 (

A
vg

. P
at

h
Le

ng
th

)

N= 128
N= 256
N= 512
N= 1024
N= 2048
N= 4096
N= 8192
N=16384

Fig. 3. The average lookup length as a function of ρ and N

of the data points where P s are equal. This graph is mainly to show that the
lookup length is not a function of the population alone.

Second, in figure 3 we show the behavior of the path length as a function of
the density and the size of the identifier space. The curves are, to first approx-
imation, vertically shifter by the same distance, while the values of N used are
exponentially spaced. This means that the dependence on N alone (constant P)
is logarithmic. Indeed, it was noted in the Chord papers that the average path
length is 0.5× log P . However, we can see an additional observation by looking
at the data collapse obtained in figure 4 by subtracting < L(1,N) > from every
respective curve < L(ρ,N) > compared to 0.5 log2 ρ. From the data collapse, we
can clearly see that < L(ρ,N) >= 0.5 log2 ρ + f(ρ) where the function f is a
decreasing function. That is for any given number of nodes, the lookup length

A Physics-Style Approach to Scalability of Distributed ystemsS

270 E. Aurell and S. El-Ansary

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

ρ (P/N)

<
L(

ρ,
N

)>
 −

 <
L(

1,
N

)>

N= 128
N= 256
N= 512
N= 1024
N= 2048
N= 4096
N= 8192
N=16384

0.5*log(ρ) →

Fig. 4. Data collapse of the average lookup length as a function of ρ and N compared
to 0.5 log2 ρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

ρ (P/N)

<
L(

ρ,
N

)>
 −

 0
.5

*l
og

2(P
)

N= 128
N= 256
N= 512
N= 1024
N= 2048
N= 4096
N= 8192
N=16384

Fig. 5. Data collapse by subtracting the respective 0.5 log2 P from all data points

increases when they are placed in a smaller identifier space. Another way of
observing this phenomena is shown in figure 5 where from each data point, the
respective 0.5 log2 P is subtracted.

5 Discussion

A main direct result of this paper is that if one compares two Chord systems,
both with P nodes, in address spaces of size N1 and N2, N1 < N2, the average
path length in the (P,N1) system is larger. This is somewhat counter-intuitive,
since it suggests that having a larger space to look in speeds up the search (on
average). Imagine that in both cases the address space is in fact of the same size

271

N2, but in the first case only the N1 regularly spaced nodes can be populated,
with gaps of size N2/N1 between them.

The explanation is that the Chord routing table has log2N2 elements. If all
N2 addresses can be populated, all entries of the routing table can be used to list
a hop that will bring you closer to your destination. In the situation with onlyN1

addresses, there is rigidity in the placement of populated nodes (in the address
space of size N2), and all elements in the routing table are not used. Indeed,
if written in the N1 address space, the routing table has but log2N1 entries.
Hence, the effect of having more keys to look for locally is slightly stronger
than having to search in a larger spaces. In different language, given structured
overlay network, it is appearently an advantage to sample it randomly, and not
be confined to a subset of keys and possible nodes.

The overall motivation for this work is that physics-style analysis may prove
useful in designing and analysing large P2P systems, and we end with a short
summary of what we want to accomplish in this direction, and why.

First, it is a well-known fact in the community that simulations of different
P2P systems of varying sizes are plentiful, but systematic methods to compare
them are more rare. Statistical mechanics is the physical theory of what macro-
scopic properties that emerge for which microscopic descriptions, and how a
large system approaches the infinitely large, or thermodynamic, limit. The ulti-
mate goal when analysing a P2P system is indeed to to find out which desirable
(or desirable) properties hold for a large system as a whole, when you have but
specified the individual component. This is in fact a new statistical mechanics
to be discovered. It is also of some practical importance to be able to say that a
simulation is large enough, and that nothing essential can be gained by simulat-
ing an even larger system. Specific techniques for such tasks are e.g. finite-size
scaling.

Second, dynamic properties should also be described by intensive variables.
A possibility would be e.g. the average number of join or leave operations per
populated node and time between running a stabilization algorithm. One exam-
ple which has been studied by one of the authors is the ratio of join or leave
operations to the number of look-ups generated in DKS [10], a system where up-
dating outdated routing information is performed on the fly. Preliminary results
on this system indicate the existence of at least two phases, one ”good” (with
path length proportional to log2 P), and one bad (with a very large path length,
possibly proportional to P).

Third, it may be a general feature of many P2P systems, that they should
preferentiably be operated in a ”good” phase, but as close as possible to phase
boundaries. This is because goodness usually costs, e.g. in stabilization. Tech-
niques to estimate where phase boundaries lie, and to monitor if they are close
in a dynamically changing environment, may hence give new ideas to control
of P2P systems. Examples in this direction are spontaneous fluctuations, which
grow strongly in size close to at least some types of phase transitions.

A Physics-Style Approach to Scalability of Distributed ystemsS

272 E. Aurell and S. El-Ansary

6 Conclusion

The main contribution of this position paper is the introduction of a methodol-
ogy for analysing large-scale distributed systems using physical systems analysis
techniques. The main goal of such an approach is to illustrate how the behav-
iors of large systems could be understood while eliminating the need to simulate
large instances.

An example of the methodology is provided as a study of a property of the
Chord system, namely the density of the population of nodes in an identifier
space.

Acknowledgements

We thank Scott Kirkpatrick for discussions on the interface between P2P and
statistical physics. We thank Seif Haridi, Per Brand, Luc Onana, Ali Ghodsi and
the other members of the DSL laboratory at SICS for many discussions.

References

1. Chaikin, P.M., Lubensky, T.C.: Principles of condensed matter physics. Cambridge
University Press (1995) ISBN: 0521794501.

2. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems.
AAAI-92. Proceedings Tenth National Conference on Artificial Intelligence (1992)
873, 459–65

3. Kirkpatrick, S., Selman, B.: Critical behaviour in the satisfiability of random
boolean expressions. Science 264 (1994) 1297–1301

4. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determin-
ing computational complexity from characteristic phase transitions. Nature 400
(1999) 133–137

5. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-sat:
Relation of typical-case complexity to the nature of the phase transition. Random
Structures and Algorithms 3 (1999) 414

6. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solutions of random
satisfiability problems. Science 297 (2002) 812–815

7. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIGCOMM
2001, San Deigo, CA (2001) 149–160

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service For Internet Applications. Technical Report
TR-819, MIT (2002) http://www.pdos.lcs.mit.edu/chord/papers/chord-tn.ps.

9. Mozart Consortium: The mozart homepage (2003) http://www.mozart-oz.org.
10. Alima, L.O., El-Ansary, S., Brand, P., Haridi, S.: DKS(N; k; f): A Family of

Low Communication, Scalable and Fault-Tolerant Infrastructures for P2P Appli-
cations. In: The 3rd International Workshop On Global and Peer-To-Peer Com-
puting on Large Scale Distributed Systems-CCGRID2003, Tokyo, Japan (2003)
http://www.ccgrid.org/ccgrid2003.

BGP-Based Clustering for Scalable
and Reliable Gossip Broadcast�

M. Brahami1, P. Th. Eugster2, R. Guerraoui1, and S. B. Handurukande1

1 Distributed Programming Laboratory,
Swiss Federal Institute of Technology in Lausanne (EPFL)

2 Sun Microsystems, Switzerland

Abstract. This paper presents a locality-based dissemination graph algorithm for
scalable reliable broadcast. Our algorithm scales in terms of both network and
memory usage. Processes only have “local knowledge” about each other. They
organize themselves dynamically (right from the bootstrapping phase), accord-
ing to join, leave or crash events, to form a locality-based dissemination graph.
Broadcast messages can be disseminated using these graphs in large networks like
the Internet, without relying on any special infrastructure or intermediate brokers.
Roughly speaking, a dissemination graph consists of “non-crossing” (indepen-
dent) trees that provide multiple paths between processes for improved broadcast
efficiency and reliability. Each tree is constructed using BGP routing information
about process “locality”. We convey the feasibility of the algorithm using both
simulation and experimental results and describe an application of our algorithm
for broadcasting information streams.

Keywords: System design, Peer-to-peer communications, Content distribution,
Multicast, Service overlay networks, Fault-tolerance, Broadcast streams.

1 Introduction

Traditional reliable broadcast algorithms [1] guarantee a very high level of reliability,
despite message losses and process crashes, but scale poorly. Broadcast schemes like
IP multicast [2] and MBone [3] are not widely available in the Internet and need spe-
cially configured routers (multicast routers and mrouted processes). Further more, these
schemes do not cope well with message losses and process crashes.

Application level broadcast algorithms [4–10] have been recently proposed as a vi-
able alternative. The general idea is to make use of some intermediate overlay network
over the actual physical network, in order to cluster processes and achieve more effi-
cient information dissemination. Such application level broadcast algorithms have good
scalable and reliable properties. They can also be deployed easily in a large scale set-
ting. Many of these approaches exploit an abstract notion of “locality” in the clustering
procedure in order to arrange processes according to network locality. Some approaches
use centralized services [11, 12] to find “distance” between processes in the Internet.

� This work was sponsored by European Project PEPITO (IST 2001 33234).

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 273–290, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

274 M. Brahami et al.

But, with a large number of processes, it becomes quickly infeasible to query a central-
ized service with all the existing process IDs to determine a “close” process for a given
process. Round trip time (RTT) is also used to find “locality” information for clustering
processes. But again this has the same draw back (the difficulty of finding RTT to many
number of processes) as above with a large number of processes.

In this paper we present a locality-based broadcast algorithm. Our algorithm is scal-
able and provides a reasonable level of reliability. No specific infrastructure is needed
(unlike for e.g., [3] and [13]). Processes have local knowledge about each other and self-
organize (peer-to-peer based) in a dynamic content distribution scenario where processes
join and leave in an ad-hoc fashion to form a dissemination graph. When a new process
joins, it contacts one or more existing process/es to find a suitable place in the graph.
In simple terms, this resembles a tree search to find a “locality” based suitable region.
The notion of locality is based on BGP [14] routing information. Our scheme minimizes
the usage of slow network links to reduce the delay incurred to deliver messages and
reduce congestion in such links. It offers high level of reliability in a dynamic environ-
ment where processes leave the graph and crash. To achieve this, our graph building
algorithm constructs “non-crossing” independent paths within the dissemination graph.
We assume that there are few sources which broadcast with respect to the destinations.
We show reliability properties using formal analysis and illustrate the feasibility of our
approach through results obtained both with a prototype as well as with simulations.

In Section 2 we contrast our approach with related work. Our general broadcast
architecture is presented in Section 3. The reliability of the scheme with independent
trees is formally analysed in Section 4. A full algorithm which performs clustering
and constructs dissemination graph with independent trees is described in Section 5.
Section 6 presents simulation and prototype measurement results. Two possible applica-
tions of our general broadcast scheme is discussed in Section 7. Section 8 concludes this
paper.

2 Related Work

BGP information is used in [15] to construct topological-aware Distributed Hash Tables
(DHT). These DHTs are used to locate objects in an overlay network.

Application level broadcast have been widely described in the literature. We discuss
here the efforts closest to ours.

In [7], several ways of arranging peers to form a hierarchy are mentioned, namely
by selecting nodes either through 1) a random fashion 2) a round-robin fashion or 3)
a smart-placement fashion (based on their network location). In a very large scale net-
work, the network-oblivious schemes based on random and round-robin selections are
obviously not adequate. A more efficient approach consists in selecting nodes using
smart-placement. This is done in [7] through a centralized service. Though many such
services are described (e.g., [11, 12]), to our knowledge, they are not available in the
Internet to be utilized as such. Even if such a service was available, it would not be clear
how it could be used in a large scale setting.

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 275

Narada [4] is a multicast scheme with self-organizing capabilities. In this scheme,
every member maintains a list of all other members, as well as a list of routing cost to
every other member for paths between them. Then a per-source tree is constructed using
an algorithm similar to DVMRP [16]. The scheme is very heavy in terms of memory
and hence does not scale. Indeed, and according to the authors, the scheme is targeted
towards medium size groups (with hundreds of members).

Scattercast [6] is based on an infrastructure (a set of servers known as agents) which
needs to be deployed a priori. The agents construct an overlay network using a method
similar to [4]. Individual clients are attached to close proximity scattercast clusters. The
method used for automatic location of such a scattercast cluster is not presented (it is
identified as a subject of future work by the author).

YOID [5] is an application level broadcast scheme which uses a general concept of
“locality”. However, no concrete hint is given on how locality information is determined
when interconnecting processes.

Gossip-based broadcast algorithms [8, 17, 13, 18, 19] can also be viewed as appli-
cation level broadcast schemes. While providing probabilistic guarantees on delivering
messages, they have very good scalability properties and high resilience against failures
and message losses. For instance, the algorithm presented in [13] is targeted toward
small-scale WANs and relies on “gossip servers” which need to be setup and config-
ured for each LAN manually. Hierarchical gossip-based broadcast algorithms presented
in [18, 19] promote the idea of grouping processes (members) according to their locality,
but no concrete way to exploit this locality is presented.

SplitStream [20], a content distribution scheme built on top of a DHT uses multiple
paths between the content source and the destination. The topological placement of
nodes is not done globally but limited to a few number of nodes (the “leaf set” of the
DHT).

We describe in this paper a deterministic approach to message forwarding that limits
the network usage. BGP-based clustering scheme can be applied both in a deterministic
as well as in a randomized gossiping context.

3 Dissemination Architecture

In our dissemination scheme, the processes self organize in a peer-to-peer fashion to
form a dissemination graph. The basic idea of our scheme is conveyed in Figure 1.
Depending on their available resources (and possibly user-defined criteria), a subset of
processes can be used to forward the messages they receive to other processes. The
processes which are not capable of forwarding events to others (e.g., due to resource
constraints) act as “pure clients” and receive events forwarded either by the source or
by some other processes.

We construct a graph for message dissemination in a peer-to-peer basis. There is only
one source for a given graph. For the sake of presentation simplicity, yet without loss
of generality, we only discuss one such graph. The graph consists of independent trees
connecting the source and all receiving processes. These trees are constructed accord-
ing to the network bandwidth between processes. Broadcast is achieved by forwarding
messages along these trees.

276 M. Brahami et al.

Processes have parent-child relationships. A process P1, which forwards the mes-
sages it receives to another process P2, is called a parent of P2 and P2 is called a child
of P1. The number of possible children a parent can have is called the parent’s fanout.
The fanout of a process is chosen according to its capabilities in terms of computation
and network resources. Our scheme aims at grouping processes which are “closer” in
the Internet. This is achieved using BGP-based clustering as described below.

Fig. 1. Process-Assisted Broadcast

3.1 BGP-Based Clustering

Our clustering scheme relies on BGP [14] routing information. In particular, we use
the notion of Autonomous System [14] (AS) to identify the segments of the Internet.
Basically, an AS consists of a set of networks (a set of IP address blocks) which are
managed by one administrative domain like an Internet Service Provider (ISP). Generally
the networks inside a sameAS have high bandwidth links connecting them. For example,
the networks connecting universities in a country, large companies and organizations are
typically in the same autonomous systems. In other terms, within such AS, individual
networks and computers usually have high bandwidth links between them. Processes in
a given autonomous system are arranged as neighbors in our dissemination graph.

It is possible for a process to find its AS using BGP information. This information is
extracted using BGP routers or WHOIS servers [21, 22]. A service can be built on top of
BGP routers to provide this information directly from the lower level network in a real
time fashion. On the other hand, there are WHOIS servers [22, 23] which provide BGP
information in an off-line fashion. This service can be mirrored locally, for example at
the source, to have a low response time. Also the network address of a process (which

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 277

has an IP) can be obtained using such BGP routers and WHOIS servers. The network
address represents more fine-grained segmentation of the network.

In this paper, we only consider the AS and do not use the network address. Each new
process can know its corresponding AS when the process first contacts the service when
joining the group. If a fine-grained division is required, the network address of a given
process can also be used in the clustering. In such a case, processes are also grouped
according to the local networks they belong to inside a given AS.

We also group ASs according to their countries. This helps a process to aggregate
information about other processes: as a result, first, the size of the memory necessary to
keep local information about neighbors is minimized. Second, there is a high probability
to find a “closer” parent to a given process within the same country than from a different
country.

These techniques can be used to divide the network into clusters and sub-clusters.
A group of ASs in a country is called cluster where as individual ASs are sub-clusters
within the cluster. This approach to find the “locality” can be efficiently applied in a
large scale setting like in the Internet.

The clustering of processes promotes good communication between neighbors and
minimizes the amount of “local” information about other processes without keeping
global knowledge. It also helps a new process to find a suitable parent within an accept-
able time duration without consuming too much computing and network resources. In
other words, though there are many thousands of processes, the new process is provided
with adequate information to select a suitable parent.

3.2 Parent Selection

Our scheme provides heuristic information for any new process help it to find a suitable
set of parents. The source and a set of existing processes provide this information. To
ensure scalability, the source and processes keep a minimum amount of information
for providing this heuristic information. The source keeps the information about the
clusters and the knowledge about a limited set of processes for each of these clusters.
When a new process contacts the source, the source first checks the cluster to which
the new process belongs. Then the source, using its local knowledge, checks if there is
any process already in this particular cluster. If the source finds one or more processes
which are already in this cluster, then the new process is provided with the IDs of those
existing processes (if there are no existing processes in the cluster, the new process will
join as a child to the source itself). The new process contacts these processes which are
already in the cluster. Unlike the source, the processes inside a cluster have more precise
information about other processes in their respective clusters. That is, inside a cluster
each process knows to which sub-cluster it belongs. Also, processes know a subset of
the processes in their sub-cluster as well as in other sub-clusters. As a result, if the new
process pn is in ASn, then pn will be redirected to any existing processes in ASn (details
are in the Section 5). If there are no such existing processes in ASn, pn joins to some
other existing processes.

The exact choice of a parent is made by the new process from the set of possible
parents provided to the new process. In other terms, the new process measures the
communication latency to each potential parent and also verifies the availability of an

278 M. Brahami et al.

out-going link from each such parent. The parent is chosen such that it has an available
out-going link with sufficiently low latency to the new process.

At this point, it should be noted that the trees can be re-arranged to make the scheme
more efficient. For example, if a new process with a fanout greater than zero can not join
because all the leaf processes of the tree are having a fanout of zero, then the tree will
re-arrange by making the new process a new intermediate node in the tree.

Due to clustering, processes only keep a limited amount of information about other
processes for the purpose of parent selection: this preserves scalability.

Example. The parent selection can be elaborated using a simple diagram as shown in
Figure 1. In this simple example, the processes belong to three clusters S1, S2 and S3.
The source P knows about processes A, C, F, D and E from clusters S1, S2 and S3
respectively. (For the purpose of having a higher reliability, the source can know more
than one process from each cluster). In cluster S1, there are two sub-cluster SS1 and
SS2. Processes A and B are located inside SS1 while C is in SS2. Process C, which is
also known by P, knows that process B is a child (of C) and belongs to sub-cluster SS1.

Suppose a new process G from SS1 wants to receive events from P. G first contacts
the source P. P observes that G belongs to S1. As P already knows that A and C are in
S1, P asks G either to join A and C, or obtain more precise information from them. Once
G contacts C (or A), C observes that G is in SS1. G will be informed about B by C.
Depending on the available resources, G joins A and B as a child. In a situation where
none of the existing processes in a cluster can be assigned as a parent to a new process
(for example, due to resource constraints), the tree will be re-arranged to make the new
process an internal node in the tree (assuming the new process can forward messages
to other processes) and previous leaf processes will remain leaf processes, in the newly
arranged tree. If all the existing processes are not able to forward messages, and the new
process also can not forward messages, the new process will join the source. A similar
scenario applies to process F in S2 since F is the only process in that cluster.

4 Independent Trees

At this point it should be clear that the processes in the lower level of the dissemination
tree rely on the proper functioning of the higher level processes which forward messages.
If one such higher level process crashes, all the child processes of the crashed process
will not receive events until the system reconfigures to construct the dissemination tree.
The independent trees (i.e., non-crossing paths between the source and the receiving
processes) are used to minimize the effect of such crashes and improve the efficiency
as well as the reliability of the dissemination scheme. These multiple paths can be used
in different ways depending on the nature of the application and the messages being
broadcast. They are further discussed later in the paper.

Example. Before continuing the elaboration of our scheme, let us consider a simple
example. As shown in Figure 1, the source sends events along two separate paths (more
than two paths are of course possible) for a given cluster, and hence any given process
receives events along two different paths. For instance, process B in cluster S1 receives
events via process A as well as C. In the case of failure (either A or C), B still receives

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 279

a part or all events from one path (i.e., according to the configuration as discussed in
Section 7).

When a new process joins, it must join multiple dissemination trees. For example,
when G joins in Figure 1, it can select A as parent to receive events along one path
and B as parent to receive events along the other path, provided that there are free out
going links; if there are no outgoing links, the tree is re-arranged and the new process
becomes an internal node (as described in the example of the previous section). Note
that the new process G will receive messages from its own sub-cluster (from A and B) to
minimize the transient traffic between sub-clusters. This reduces the message delay and
congestion in links between such sub-clusters. Also, to re-direct G to B by process C,
process C should keep some information about B and sub-cluster ID of B. These issues
are described in Section 5. It is sub-optimal to have communication links between sub-
clusters (like between SS1 and SS2) in these trees: but for a small number of independent
trees and sufficiently large number of processes having non-zero out going links, such
communication links between sub-clusters are limited.

When there is just a single process in a cluster as in S2, that process receives events
on both paths from the source itself. As more processes join, the system reconfigures
itself: for example, as in cluster S3. That is, in S3 process D and E exchange events that
they do not receive directly from the source.

To guarantee the reliability of our scheme in the case of failures, two complementing
paths should obviously not have common processes. The algorithm arranges processes
according to the locality and rearranges them to make the scheme efficient as new
processes join.

4.1 Reliability: An Analysis

The processes which take part in the message dissemination can be scattered all over the
Internet and their behavior (in terms of join, leave and crash) is quite unpredictable. Either
because the user terminates a process or due to failures, a process can be disconnected
from the graph. Since many such processes act as parents, this might lead to form a
disconnected tree causing inability to deliver messages to lower level processes in the
tree. Of course, other trees in the graph could deliver messages and their operation is vital
in such a scenario. We analyse the impact of such disconnections of trees on the reliability
of the broadcast. For this, we use the following notions: 1) Mean Time Between Failures
(MTBF) is the mean period of time a user may expect a given system to operate before
a failure; 2) Mean Time To Recover (MTTR) is the mean period of time to recover the
failed system (e.g., reconstruct a tree after disconnection). The availability of a system
is defined as follows:

Availability (a) =
MTBF

MTBF + MTTR
(1)

If the time is measured in minutes, the down-time per day, that is the mean time a
given system is not available is :

Downtime = (1− a)× 24× 60 (2)

Assuming the availability of a single tree is a, availability of k such trees, out of m
trees in the graph, is Ak, where:

280 M. Brahami et al.

Ak =
(

m

k

)
ak(1− a)m−k (3)

Hence the availability of at least k trees is αk, where:

αk =
m∑

i=k

Ai =
m∑

i=k

(
m

i

)
ai(1− a)m−i (4)

For the proper functioning of the broadcast scheme, there should be at least one
failure free tree at any given time. This tree can be used either to receive messages
directly or to recover the messages (by retransmission from parent) once the message
digests are received by a process (see Section 7 for more details). Availability of at least
a single tree out of m trees is α1, where:

α1 =
m∑

i=1

Ai =
m∑

i=1

(
m

i

)
ai(1− a)m−i (5)

Assume an extreme case where, for a given dissemination tree, MTBF is 15 minutes
and MTTR is 4 minutes; that is a dissemination tree gets disconnected each 15 minutes
on average due to a process leaving the graph and it takes 4 minutes to reconstruct the tree
again (more on this is at the end of this section). Then using Equation 1 and 2 it can be
seen that availability of a single tree (or any other scheme based just on a single path) is
0.7895 and the down-time is 303.15 minutes (around 5 hours) per day. Using Equation 5
and 2 it is possible to calculate the down-time of a system with m independent trees. For
various values of m, the down-time per day is shown in Figure 2. For a dissemination
scheme with 4 independent trees, the down-time is 2.82 minutes per day while with 6
trees it is 0.12 minutes per day.

This shows that, even in a very dynamic and unpredictable environment, where a trees
fails at every 15 minutes (on average) due to processes leaving the graph, the reliability
of the scheme can be improved considerably by having a few independent trees.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6

D
ow

n
T

im
e

pe
r

da
y

(m
in

ut
es

)

Number of independent trees

Fig. 2. Down-time of the broadcast scheme (with MTBF = 15min and MTTR = 4min)

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 281

It should be noted that the reliability can also be improved by reducing MTTR. This
can be done by localizing the reconstruction: that is, whenever a process crashes or
leaves the tree, the neighbors of that process reconstruct the tree without involving all
the processes in the tree. The construction of the entire tree takes more time than the
localized reconstruction.

5 Algorithm

In Figure 3 and 4, we describe the basic algorithm which constructs the dissemination
graph. For presentation simplicity, we only show the major parts of the algorithm. When
a process (potential receiver) joins a graph, the process sends a number of requests
to the source (broadcaster) and then possibly to a set of other processes. It is impor-
tant to note that the messages we refer to in this section are only protocol messages
(e.g., Join, SourceAccept, Accept, etc.) that are used to construct the graph. They are
not the actual application broadcast messages that is broadcast by the source. For all
these protocol messages, the sender of a given message is denoted as Ps and the receiver
is denoted as Pr.

The graph consists of m independent trees: each tree has a color to identify itself. A
process receives messages from all the trees but only forwards messages from one tree,
T. The color of a process is the color of that tree T. A child process that has the same
color as parent p, is called a direct child of p. A parent has a list of all children denoted as
children list and list of all direct children denoted as direct c. It is obvious that direct c
⊂ children list for its own sub-cluster.

A process is considered as full if it can not have -more- outgoing links. A process
which has a parent from another sub-cluster than its own, is called a sub-cluster head.

5.1 Basic Sequence of Messages

We describe here, the basic sequence of messages shown in the algorithm (Figure 3
and 4). When first joining, the new process, Pn, finds its country and AS (autonomous
system). Then Pn sends a Join message to the source: the source replies either with
a SourceAccept or Redirect message. If an existing process Pe (other than the source)
can accept Pn as a child, then Pe sends an Accept message to Pn. If a process detects
itself as a sub-cluster head, then it sends a Route message to its parent: all the processes
forward this message to their parents. While sub-cluster heads alter this message before
forwarding, others forward the message as it is. Once it is received by the source, the
message is discarded.After receiving all mAccept messages, the new process Pn decides
on its color: then Pn sends a SetColor message to its parents. The parents update their
children list and direct c lists accordingly.

These messages (both requests and responses) and the tasks associated with them
are shown in Figure 3 and 4. These request and response messages (simply stated as
“messages” in this section) and associated tasks are described briefly next.

282 M. Brahami et al.

1: For connecting to the broadcast group:
2: get country c and AS as
3: send join(c, as) message to S

4: upon receiving a Join(c,as) from Ps by Pr

5: if Ps and Pr are in same AS then
6: if Pr ¬ full then
7: Pr sends accept(|children list|,|direct c|) to Ps

8: else
9: Pr sends redirect(direct children of Pr in same AS)

10: else
11: if Pr is a sub-cluster-head then
12: if ∃ Pe ∈ routing table such that Pe.AS=as then
13: Pr sends redirect(Pe) message to Ps

14: else Do as 15 to 18
15: else if Pr ¬ full then
16: Pr sends accept(|children list|,|direct c|) to Ps

17: else
18: Pr sends redirects(direct children of Pr) to Ps

19: upon receiving a accept(|children list|,|direct c|)
20: set Pr .parent =Ps

21: if all m accept messages are received then
22: if parent Pi of Pr is from another sub-cluster then
23: select color of Pi

24: Pr sends Route(Pr id,AS of Pr)
25: else
26: select a parent who needs more direct children {using

parameter of the message}
27: Pr sends SetColor(Pr id,color of Pr) to Ps

28: upon receiving a Redirect(list)
29: let P = set of potential parents
30: if Ps is the source then
31: for all p ∈ list do
32: send join(c,as) messages
33: else
34: P← P ∪ list
35: t← select one from P
36: P ← P \ t
37: send join(c,as) message to t

38: upon receiving a SourceAccept(list, clr)
39: set color to clr
40: for all p ∈ list do
41: send join messages

Fig. 3. Graph Building Algorithm: At every receiver process

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 283

42: upon receiving a Route(process id, p AS)
43: if Pr is a sub-cluster-head
44: routing table← (process id, p AS)
45: forward Route(Pr id, p AS) to parent of Pr

46: else
47: forward Route(process id, p AS) to parent of Pr

48: upon receiving a SetColor(process id, clr)
49: children list← children list ∪ (process id, clr)

Fig. 3. (Continued)

5.2 Messages

Join This message is sent by Ps to Pr when a process Ps needs to join a group. First
the message is sent to the source. Then, depending on the response this message will
be sent to other processes. The source might respond with a SourceAccept or Redirect
message. Other processes respond with an Accept message or Redirect message. If the
processes (not source) Ps and Pr are not in the same sub-cluster and Pr is a sub-cluster
head, then Pr performs a routing table lookup in routing table to find another process
that is in the same sub-cluster as of Ps.

SourceAccept. This message is sent by the source (as a response to a join message) when
the source decides to accept a receiver process as its own child. That is, when there are
less than m processes in a cluster C (country) at the bootstrapping (initial) phase, these
messages are sent to construct the initial set of children and the graph. The information
about the process ids (of source’s children in the country C) and their corresponding
color is also sent along with this message. Then each process sets its color according to
the request of the source and sends a join message to all other processes as indicated by
process ids.

1: upon receiving a Join(c,as) from Ps

2: let C=immediate children of S in country c
3: if |C| < m then
4: C← C ∪ Ps

5: for all p ∈ C do
6: clr← select color for p
7: send SourceAccept(C,clr) message
8: else
9: send redirect(C) to Ps

Fig. 4. Graph Building Algorithm: At the source S

284 M. Brahami et al.

Accept. This message is sent by a process Ps to another process Pr as a response to
a join message when Ps decides to accept Pr as a child. If one parent is from another
sub-cluster, Pr selects the color of this parent. As a result, subsequent processes from the
same cluster (as of Pr) can find a parent from within their own cluster. This reduces the
number of links between the sub-clusters. Since such links are associated with greater
delays (than links in the same cluster), by reducing such links, the efficiency is increased.
The two parameters (number of elements in children list and in direct c) allow a child
to decide its color in an efficient manner. Using this parameter it is possible to estimate
whether one parent is not having adequate direct children (i.e., enough out-going links)
of its own color. Then Pr can select the color of the process which does not have adequate
direct children. In other terms, this selection criterion helps to have enough out-going
links of each color.

Redirect. This message is sent by Ps to Pr in response to a join message sent by Pr

(who is looking for a parent). The parameter, list, is a set of possible parents to Pr. If
Ps is the source, then (|list| = m) Pr will send m number of join messages to construct
m trees. If Ps is not the source, then Pr explores each process in “list” to find a suitable
parent by sending join messages to them. This join-redirect set of messages resembles
a search in a tree to find a possible parent.

Route. This message is used to update the routing information in sub-cluster heads, (a
sub-cluster head is a process whose parent comes from a different sub-cluster than his
own). These processes keep a small amount of routing information. As a result, given
a process from a particular sub-cluster ASi, the sub-cluster head knows whether there
are any other processes in this ASi, in the sub-tree below the sub-cluster head. If such a
process exists, a new process which tries to join can be redirected appropriately. In short,
this message helps to group processes of the same sub-cluster together. This message
has a parameter <process id,p AS>, where p AS is the sub-cluster which could be
reached via process id. Sub-cluster heads alter the process id and forwards the new
route message to their parents.

SetColor. This message is sent to Pr by Ps in response to an accept message indicating
that Pr is selected as the parent. The parameter “color” indicates the color of Ps. Pr

keeps information about ID of Ps and color of Ps.
For the presentation simplicity, the Figure 3 and 4 show only the major parts of

the algorithm. The procedure of broadcasting (application message forwarding) is not
shown in the algorithm; but this is simply done by forwarding messages along the edges
of the trees by each process starting from source. The information a process stores
(e.g., children list) has the nature “soft state”; that is, these informations need to be
refreshed periodically (e.g., in this case by children). In other terms, in order to be in
the children list, children need to inform parents about their presence periodically. This
nature of “soft state” information enables to handle crashes and leaving of processes
without any notification.

When a process (in particular an intermediate node in a tree) crashes (or leaves
without any notification), one of the path (of a given color) in the dissemination graph is
broken. Under such circumstances (once the children observe the crash of parent), after

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 285

a timeout, the children of crashed process should initiate a procedure to reconstruct the
broken path. The naive approach would be that these children contact the source again to
construct a path with the color of the broken one (other paths are unaffected). This naive
solution is not optimal in terms of communication steps, but consumes less memory as
it does not require additional information for the reconstruction procedure.

6 Performance

In this section we present results obtained from 1) a prototype implementation as well as
from 2) simulations. We use the prototype to test the feasibility of BGP-based clustering
in a real world scenario as well as to evaluate the performance of the dissemination
scheme. The feasibility of clustering method in a larger scale is also tested using a
simulation. We also use simulation to check the performance of the system with different
values of fanout.

6.1 Prototype Implementation

In this real experiment, we used a source which broadcasts messages with the size of
1kb each to a total of 210 processes.

Setting. A source publishes over a modem connection (56kbps) from country A and in
autonomous system X . We used 150 processes in one country (A), and in autonomous
system Y , while 60 other processes were in another country (B), and in the same au-
tonomous system. A random value between 1 to 4 was chosen as the “fanout” (i.e., max.
number of outgoing links) for each process. This simulates a real-life setting where the
fanout of an individual process depends on its network bandwidth and user preferences.
As described in Section 3, the country is specified for each process and the autonomous
system is obtained using the WHOIS [21] service.

Results. Table 1 summarizes the results obtained in this experiment. The details of these
measurements are discussed next.

Table 1. Communication between two Clusters

Country A B

Number of processes 150 60
Maximum depth 8 8
Average depth 5.3 5.7
Maximum join latency (ms) 1758 1302
Average join latency (ms) 952 1150
Minimum join latency (ms) 686 757
Maximum delay (ms) 213 267
Average delay (ms) 195 258
Minimum delay (ms) 177 182

286 M. Brahami et al.

Maximum and Average Depth: The depth of a process reflects the number of hops
taken by a message before being delivered to that process. The maximum time taken to
disseminate a message depends on the maximum depth of the dissemination tree used
for its dissemination. The average depth in contrast is the average number of hops taken
by messages before being received by processes.

Maximum and Minimum Join Latency: In the dissemination scheme, a process joins a
suitable parent in the join phase. As processes are redirected progressively starting from
the source (see Section 3.2) to other processes, there is a certain latency when joining
the dissemination tree. The maximum and minimum latencies are depicted by these two
values.

Maximum, Average, and Minimum Propagation Delay: As each message is forwarded
a given number of times by the processes, there is a delay before a message is received
by each process. The maximum propagation delay is the largest delay incurred when
receiving a message in the system. This delay occurs for the bottom most process in the
dissemination tree. Similarly, minimum and average propagation delay represents the
minimum and average delay incurred in the dissemination process.

6.2 Simulations

We performed a set of simulations to analyze the performance of our clustering scheme
beyond the above (admittedly limited) setting involving only 2 countries and 3 au-
tonomous systems. We were interested in finding 1) the maximum delay (in terms of
hops) incurred due to successive forwarding of messages between processes, and 2) the
impact of the fanout on the maximum delay.

Setting. We simulated a set of IP clients which are globally distributed. To achieve this,
we used a set of IP addresses of hosts which had recently accessed our laboratory web
site. To group IP addresses into clusters and sub-clusters within each country, we used
the WHOIS [21] service from [22].

We associated, -with each IP address-, a random integer f such that f is bounded by
1 � f � k. The parameter f depicts the fanout or the number of out-going links from a
process to other processes. We varied k such that k= 2,3,4,5 and did the simulations for
each k. As a result, we represent processes which are capable of forwarding messages
to up to k other processes as well as ones that can forward messages to only 1 other
process.

Results. For each value of k we constructed the dissemination tree as shown in Figure 1
(Y-axis = depth, X-axis = fanout) and found the maximum and average depth of the tree
to estimate the maximum delay incurred due to hops when disseminating the messages.
Since the delay incurred for each message depends on the number of hops the message
has, it is critical to limit the number of hops. The maximum number of hops a message
will have is equal to the maximum depth of the tree in our dissemination scheme. Since
it is more general and appropriate to express the delay in terms of hops in end processes
based (peer-based) systems, we used hops as the measure of the delay in our results.

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 287

Fig. 5. Maximum Delay for Different Values of k

Figure 5 shows the delay for each value of k. Here, -for example- when k=2, the fanout
of processes can have a value of 1 or 2.

7 Applications

In this section we describe two specific applications that can be built on top of our
broadcast. First, we present a scheme suitable for streaming media. Second, we describe
a general gossip-based broadcast that will reduce the network usage (by using message
digests) while preserving the necessary redundancy to handle message losses and
failures.

7.1 Broadcasting Stream Data

Stream data such as audio and video consists of samples which are broadcast in a
fragmented fashion. These fragments, which form a “signal” (e.g., a video frame, an
audio clip), are re-assembled at the receiver. Fragmentation can be done such that even
if a set of fragments are lost, this does not necessarily invalidate an entire message (e.g.,
a video frame, an audio clip). There are number of coding schemes (e.g., [24, 25]) which
can deliver adequate quality stream data in spite of high level of message loss. Our
independent dissemination trees can use such coding schemes very efficiently to deliver
stream data. These successive (or interleaving) fragments (packets) can be routed in a
round-robin style over multiple trees.

In such a scenario, the crash of a path does not cause a complete loss of the broadcast.
The crash of a path only degrades the quality of the signal until that path is reconstructed.
This technique is hence applicable whenever the composition of single events/messages
generates higher quality aggregated data.

In the context of streams, our scheme applies particularly well since the redundant
trees are efficiently used: that is, the redundant trees do not disseminate duplicate mes-
sages but messages that can augment other messages.

288 M. Brahami et al.

7.2 Deterministic Gossip

The independent trees of the dissemination graph can be used to implement gossip-based
dissemination scheme in a deterministic fashion. In other terms, as the simplest case,
processes receive the same set of messages via independent and redundant trees (e.g., m
different trees). The source can set the parameter m according to the level of redundancy
required by the application to circumvent message losses and process failures.

Another approach is to send messages in k (where k < m; e.g., k = 1) trees and
use other m−k trees to send digests (i.e., message IDs) of those messages. As a result,
when the system operates without process failures and message losses, a process receives
actual messages k times and message digests from m−k trees. In the case of k trees
that send actual messages fail, the process still receives message digests from other
independent trees. Under such circumstances, a process is aware that it is not receiving
all messages that are being broadcast. Then (after a time-out) the process can ask for
messages from its parent in the correctly functioning trees from which it receives the
digest of the actual message. This recovery phase of messages is efficient since it is done
using neighbors of a given process (localized recovery) instead of using the source itself.
This method of deterministic gossip could help to reduce the amount of network usage
while still maintaining good reliability properties by having redundancy.

8 Conclusion

This paper presents a scalable gossip broadcast algorithm with good reliability properties.
Broadcast is achieved using a graph, consisting of processes grouped according to their
locality. Processes (including the broadcaster) forward messages to a limited number
of other neighbors. This number is defined according to their capabilities in terms of
resources. The processes only know about limited number of other processes.

To group processes according to their locality, a clustering scheme based on BGP
information is used. This scheme arranges processes in the Internet according to their “lo-
cality”. Consequently, message delays between processes and transient broadcast traffic
between large networks (autonomous systems) are reduced by localizing the majority of
broadcast traffic within clusters and sub-clusters. The clustering scheme, together with
the local knowledge of processes, help new processes find a suitable “place” within the
graph by using few communication steps.

The clustering approach we use to arrange processes can be applied to various applica-
tions (e.g., peer-to-peer applications) and other broadcast algorithms such as [26, 27, 18].
Our dissemination graph with multiple independent paths is particularly suitable for
broadcasting streaming data such as audio and video media.

The processes self-organize to construct the graph which consists of “non-crossing”
(independent) trees. These trees, which evolve in a dynamic environment, are used to
forward messages. As shown in the paper, even in extreme cases where processes leave
the dissemination graph often, it is possible to have good reliability properties by limiting
the down-time to a required level. We also convey the feasibility of our approach both
using simulations and experimental results.

BGP-Based Clustering for Scalable and Reliable Gossip Broadcast 289

References

1. Hadzilacos, V., Toueg, S.: 5: Fault-Tolerant Broadcasts and Related Problems. In: Distributed
Systems. 2nd edn. Addison-Wesley (1993) 97–145

2. Deering, S.: Host extensions for IP multicasting; RFC 1112. Internet Requests for Comments
(1989)

3. Eriksson, H.: Mbone: The multicast backbone. Communications of the ACM 37 (1994)
4. hua Chu, Y., Rao, S.G., Seshan, S., Zhang, H.: A case for end system multicast. In: IEEE

Journal on Selected Areas in Communication (JSAC), Special Issue on Networking Support
for Multicast. (2002)

5. Francis, P.: Yoid: Extending the internet multicast architecture.
http://www.isi.edu/div7/yoid/docs/index.html (2000)

6. Chawathe, Y.: Scattercast: An adaptable broadcast distribution framework. In: Special issue
of the ACM Multimedia Systems Journal on Multimedia Distribution. (2002)

7. Deshpande, H., Bawa, M., Garcia-Molina, H.: Streaming live media over a peer-to-peer
network. http://dbpubs.stanford.edu/pub/2002-21 (2002)

8. Birman, K., Hayden, M., O.Ozkasap, Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast.
ACM Transactions on Computer Systems 17 (1999) 41–88

9. Li, Z., Mohapatra, P.: Hostcast: A new overlay multicasting protocol. In: Proceedings of the
IEEE International Communications Conference (ICC). (2003)

10. Castro, M., Jones, M., Kermarrec, A.M., Rowstron, A., Theimer, M., Wang, H., Wolman,
A.: An evaluation of scalable application-level multicast built using peer-to-peer overlay net-
works. In: Proceedings of the IEEE Conference on Computer Communications (INFOCOM).
(2003)

11. Francis, P., Jamin, S., Jin, C., Jin,Y., Raz, D., Shavitt,Y., Zhang, L.: Idmaps: A global internet
host distance estimation service. In: IEEE/ACM Trans. on Networking, Oct. 2001. (2001)

12. Theilmann, W., Rothermel, K.: Dynamic distance maps of the internet. In: Proceedings of
the IEEE Conference on Computer Communications (INFOCOM). (2000)

13. Lin, M.J., Marzullo, K.: Directional gossip: Gossip in a wide area network. In: Proceedings
of European Dependable Computing Conference (EDCC). (1999) 364–379

14. Rekhter, Y., Li, T.: A border gateway protocol 4 (bgp-4). RFC-1771,
http://www.ietf.org/rfc/rfc1771.txt (1995)

15. L.Garces-Erice, Ross, K.W., Biersack, E.W., Felber, P.A., Urvoy-Keller, G.: Topology-centric
look-up service. In: Proceedings of COST264/ACM Fifth International Workshop on Net-
worked Group Communications (NGC). (2003)

16. Deering, S.: Multicast routing in internetworks and extended lans. In: Proceedings of ACM
SIGCOMM. (1988)

17. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov, P.:
Lightweight probabilistic broadcast. In: Proceedings of the IEEE International Conference
on Dependable Systems and Networks (DSN 2001). (2001)

18. Gupta, I., Kermarrec, A.M., Ganesh, A.: Adaptive and efficient epidemic-style protocols
for reliable and scalable multicast. In: Proceedings of 20th Symposium on Reliable and
Distributed Systems (SRDS 2002). (2002)

19. Xiao, Z., Birman, K.: Randomized error recovery algorithm for reliable multicast. In: Pro-
ceedings of the IEEE Conference on Computer Communications (INFOCOM). (2001)

20. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: Splitstream:
High-bandwidth multicast in a cooperative environment. In: Proceedings of The ACM Sym-
posium on Operating Systems Principles (SOSP). (2003)

21. Harrenstien, K., Stahl, M., Feinler, E.: Rfc 954: Nicname/whois. http://www.rfc-
editor.org/rfc/rfc954.txt (1985)

290 M. Brahami et al.

22. Web, M.: The routing arbiter project. http://www.ra.net/ (2002)
23. Bourcier, P.: Cyberabuse. whois.cyberabuse.org (2001)
24. Cai, J., Chen, C.W.: Fec-based video streaming over packet loss networks with pre-

interleaving. In: Proceedings of IEEE International Conference on Information Technology:
Coding and Computing (ITCC ’01). (2001)

25. Leslie, B., Sandler, M.: Packet Loss Resilient, Scalable Audio Compression and Streaming
for Wired and Wireless IP Networks (White Paper). (2002)

26. van Renesse, R., Birman, K., Vogels, W.: Astrolabe: A robust and scalable technology for dis-
tributed systems monitoring, management, and data mining. ACM Transactions on Computer
Systems 21 (2003)

27. Eugster, P.T., Guerraoui, R.: Probabilistic multicast. In: IEEE International Conference on
Dependable Systems and Networks (DSN 2002). (2002)

Trust Lifecycle Management in a
Global Computing Environment

S. Terzis, W. Wagealla, C. English, and P. Nixon

The Global and Pervasive Computing Group,
Dept. of Computer and Information Sciences,

University of Strathclyde

Abstract. In a global computing environment in order for entities to
collaborate, they should be able to make autonomous access control de-
cisions with partial information about their potential collaborators. The
SECURE project addresses this requirement by using trust as the mecha-
nism for managing risks and uncertainty. This paper describes how trust
lifecycle management, a procedure of collecting and processing evidence,
is used by the SECURE collaboration model. Particular emphasis is
placed on the processing of the evidence and the notion of attraction.
Attraction considers the effects of evidence about the behaviour of a
particular principal on its current trust value both in terms of trustwor-
thiness and certainty and is one of the distinctive characteristics of the
SECURE collaboration making it more appropriate for a global comput-
ing setting.

1 Motivation

Global computing is characterised by large numbers of roaming entities and the
absence of a globally available fixed infrastructure [33]. In such an environment
entities meet and need to collaborate with little known or even unknown entities.
Entering any kind of collaboration requires entities to make security decisions
about the type and level of access to their resources they will provide to their
collaborators. In traditional environments with clearly defined administrative
boundaries and limited entity movement security decisions are usually delegated
to a centralised administrative authority [34, 25, 26]. In the global computing en-
vironment no single entity can play this role and as a result traditional techniques
that statically determine the access rights of the entities are not an option. En-
tities are required to make their own security decisions. Moreover, the absence
of a globally available security infrastructure means that these decisions need
to be made autonomously. At the same time the sheer number of the roaming
entities means that it is not feasible to gather and maintain information about
all of them. Consequently, in the global computing environment decisions have
to be made in the absence of complete knowledge of the operating environment.

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 291–313, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

292 S. Terzis et al.

The SECURE1 project [35] recognises that the characteristics of the global
computing environment mean that any effort to provide absolute protection of
roaming entities against potential dangers, as envisioned by traditional security
approaches, is not feasible. It also observes that autonomous decision making
with partial information is something that humans have to deal with on a day-
to-day basis. To help them with the complexity of such a task humans have
developed the notion of trust [16]. Although trust is an elusive concept and a
number of definitions have been proposed for it, the SECURE project believes
that it can be modelled in adequate detail to facilitate security decision making
in global computing. As a result, it takes an approach to security that accepts
that dangers are an intrinsic part of the global computing environment and
uses trust as a mechanism for managing these dangers/risk. Central to such an
approach is the support for explicit reasoning about risk and uncertainty.

The potential advantages of the notion of trust in dealing with security de-
cisions have been recognised by a number of researchers as is demonstrated
by research in Trust Management systems [1, 4, 5, 11, 20, 22, 28, 37, 38]. Although
this work is a move forward in security practice, most of it is based on the ex-
change of certificates between entities [4, 5, 20, 22, 28], and does not address the
fundamental issue of what trust is made of and the related issue of how trust can
be formed. At the same time, it provides very limited support for the evolution
of trust between entities in the form of certificate revocation. Furthermore, this
approach does not really consider risk and uncertainty. As a result, this work
lacks the support for autonomous decision-making and for dynamism in trust
evolution necessary for global computing. The SECURE project addresses these
limitations by providing the following:

– A trust model with an explicit notion of uncertainty [7, 9, 10].
– A risk model [3, 13, 30].
– A collaboration model [15, 32, 14], which combines the trust and risk and

addresses trust formation and evolution as learning from past interactions
processes aiming to improve entity protection.

In this paper, we focus on how the trust lifecycle is managed within the
SECURE project and in particular how evidence about the past behaviour of
entities is processed. To further demonstrate our approach we also describe as an
example how trust lifecycle management could be carried out in an e-purse appli-
cation scenario. We start our presentation with a brief outline of the SECURE
collaboration model, starting from its foundations, the trust and risk models,
and its basic processes, decision-making, trust evaluation and risk evaluation.
We then focus on the types of evidence considered and how they are processed,
followed by a discussion on the formation of trust and the presentation of the
e-purse application scenario. We finally compare our approach to the state of art
and provide our conclusions and future work.

1 SECURE (Secure Collaboration among Ubiquitous Roaming Entities, IST-2001-
32486) is an EU FET Research Project funded under the Global Computing Ini-
tiative.

Trust Lifecycle Management in a Global Computing Environment 293

2 The SECURE Collaboration Model

The aim of the collaboration model is to capture the dynamic aspects of the trust
model. These aspects address issues like how trust is formed, how it evolves over
time and how it is exploited in the access control decision making process. The
model is founded upon the trust and the risk model. In particular, it exploits the
relationships between trust and risk to both facilitate and evaluate the access
control decision making process.

We define collaboration as a joint interaction between a set of two or more
principals P involving a set of one or more trust mediated actions A. Before
entering a collaboration each principal must make an access control decision
regarding the level of access to its resources it will permit to other principals.

In order for the terminology of the above definition to become clear, we start
this section with a brief presentation of the underlying trust and risk models
that leads on to the description of the three processes supported by the model,
namely access control decision making, trust evaluation and risk evaluation. All
three processes rely on the processing of evidence about principals’ behaviour. As
a result, evidence processing is at the heart of managing the trust lifecycle as it
determines both how trust is formed and evolves over time. A detailed discussion
of the other aspects of the SECURE collaboration model can be found in [32].

2.1 Trust and Risk

The trust model [7, 9, 10] considers principals to be entities that either have
to make trusting decisions or are the subjects of these decisions. P is defined
as the set of all principals. Trust reasoning for principals has two aspects. On
one hand decision making principals should be able to associate trust values to
other principals. T is defined as the set of all these trust values. On the other
hand, principals should also be able to update their trust values in the light of
evidence. Consequently, given the set of principals P and the set of trust values
T the global trust is defined as a function m : P → P → T , where m(a)(b) ∈ T
expresses a’s trust in b.

Following an object-based model, the ability of each principal to reason about
trust is modelled as a trust box, which has some internal trust state S and
supports two operations:

– update: S × E −→ S, given a particular trust state S and some evidence E ,
an updated trust state is produced.

– trust: S ×P −→ T , given a particular state S and a principal P, the trust
value for the principal is returned.

The operation of each principal’s trust box is described by a local policy
function π, which relates principals to trust values and supports references. Ref-
erences provide the ability for a principal to specify trust values as relations over
the trust values of other principals. This local policy π is defined as:

π : (P → P → T) → P → T . (1)

294 S. Terzis et al.

The collection of all the local policies defines a global trust policy:

Π : (P → P → T) → (P → P → T). (2)

This global trust policy is interpreted in terms of complete partial orders.
If the set of trust values T given an ordering relation � is a complete partial
order (c.p.o.) with a least element ⊥ (unknown), then the global trust m can be
calculated as the least-fixed point of the global trust function Π. The ordering
relation � represents the level of certainty in the trust values and is therefore
referred to as certainty ordering.

In addition to the �, “more certainty” ordering relation on T , the model
also defines +, “more trust”, which is equally essential. The + relation specifies
for two trust values t1 and t2, which one expresses more trust. According to
the theoretical trust model the set of trust values T given the ordering + is a
complete lattice.

The risk model [3, 13, 30] considers each collaboration between principals as
consisting of a number of trust mediated actions. Each such action is an inter-
action between two principals Pr and Pd, the requester and the decision-maker
respectively, and has a set of possible results or outcomes. Each outcome has an
associated risk. Risk is defined as the likelihood of an outcome occurring and the
cost or benefit this outcome incurs if it occurs. The risk of an outcome depends
on the trustworthiness of the requester Pr and certain parameters of the action in
question. Before each trust mediated action the decision-maker Pd must make the
decision of whether to trust the requester to carry out the requested action. This
decision is based on the overall risk of the action in question, which is a combina-
tion of the risks of all its outcomes. We refer to the overall risk that a particular
action with a particular principal entails as the risk profile of the principal.

Although others have also recognised the importance of explicit modelling
of both trust and risk (e.g. [12, 17]), the SECURE project is unique in defin-
ing a clear relationship between trust and risk. Within the SECURE project
we take the view that the trustworthiness of the requester Pr determines the
likelihood of the various outcomes, while their associated costs or benefits are
determined by the parameters of the action. For example, in the case of finan-
cial transactions the trustworthiness of the principals determines the chances of
them paying their debts, while the debt amount determines the specific costs or
benefits. Moreover, we take the view that the relationship between trust and risk
dictates that more trustworthy principals make beneficial outcomes more likely
and/or costly outcomes less likely. While, as the certainty in the principal’s trust-
worthiness increases the probability mass is more concentrated towards certain
outcomes. As a result, the trust value for principal, taking into account both
its trustworthiness and certainty dimension, determines the risk profile for a
particular action involving this principal.

2.2 Collaboration Model Processes

Having outlined the foundations of the SECURE collaboration model, we can
proceed to describe the processes comprising the model. As we have already

Trust Lifecycle Management in a Global Computing Environment 295

mentioned before these processes are: (a) access control decision making, (b)
trust evaluation and (c) risk evaluation. The aim of the three processes is to
support both decision making and evaluation of these decisions in the context
of both trust and risk.

The collaboration model takes the view that trust drives the access control
decision making and the decision that the decision making principal has to make
can be expressed as: for a particular situation st, or a particular action a, involv-
ing a particular principal p, how much risk are we willing to accept by allowing
principal p to enter situation st or carry out action a?

In this context, the access control decision making process includes the fol-
lowing steps:

1. Collaboration Request. This step is the triggering of the decision making
process. There are two alternative ways in which the decision making process
may be initiated. Either the decision maker receives a request for a particular
action from a requester, or as a requester it needs to decide which principal
to approach with a request for a particular action. Note that in the latter
case there is not really a collaboration request as such.

2. Principal Recognition. In this step irrespective of how the decision mak-
ing process was triggered the decision maker needs to determine, who are
the principals involved. Principal recognition is a superset of authentication
that does not require the pre-registration of principals [29]. As a result, it is
better suited for a global computing environment allowing the collaboration
with previously unknown principals.

3. Principal Trust Assignment. Having identified the principal in question
then the decision maker can apply its local trust policy in order to determine
their trust value. Note that this process in the case of unknown principal will
return the ⊥ (“unknown”) trust value, the bottom element of trust certainty
ordering (see section 2.1).

4. Collaboration Risk Assessment. The trust value for the principal in
question provided by the previous step can now be used to determine the
principal’s risk profile for the particular action. Note that the exact nature
of this step depends on the way in which the trust and risk domains for the
particular application have been defined. In any case this process is where
the relationship between trust and risk is exploited.

5. Access Control Policy Application. In the final step of the decision
making process the access control policy of the decision maker is applied to
reach a decision. The access control policy is in terms of risks entailed and
determines which risks are (un)acceptable for the decision maker. We should
point out that the decision is not necessarily binary, i.e. accept/reject.

During interaction with others principals collect information about their be-
haviour. As this information becomes available each principal needs to evaluate
its decision making. The evaluation is twofold. On one hand, the principal needs
to evaluate whether the trust value for each principal is correct. We refer to
this process as trust evaluation. This process involves the processing of collected

296 S. Terzis et al.

evidence regarding the behaviour of the same principal over a number of differ-
ent instances of the same action. On the other hand, the principal also needs
to evaluate whether the risk profiles used are correct. In other words, it need
to evaluate whether the cost and benefits associated with each outcome of each
action are correct. We refer to this process as risk evaluation. This process in-
volves the processing of collected evidence regarding the behaviour of multiple
principals over a number of instances of the same action.

Trust evaluation involves the following steps:

1. Collaboration Monitoring. In this step the behaviour of principals is
monitoring during a collaboration. Evidence regarding the occurred outcome
of action is produced.

2. Evidence Processing. In this step the evidence collected about the be-
haviour of principals is processed. We should point out that the collected
evidence is not just from personal interactions with a principal but also
from other principals’ interactions with the principal in question. This step
is elaborated in the following section.

3. Update Principal’s Trust Value. In the final step the processed evidence
is used to determine if it is necessary to change the current trust value for
the principal and what is the most appropriate new trust value.

Risk evaluation involves the following steps:

1. Collaboration Monitoring. This step is very similar to the collaboration
monitoring step in trust evaluation. The only difference is in the type of
evidence produced. In the case of risk evaluation we are interested in evidence
regarding the incurred costs or benefits of occurred outcomes and not the
outcomes themselves.

2. Evidence Processing. This process is quite different from the processing
of evidence regarding principals’ behaviour.

3. Update Outcome Cost/Benefits. In the final step the processed evidence
is used to determine if it is necessary to change the currently used outcome
cost/benefits and what is the most appropriate value.

2.3 The Nature of Evidence and Its Processing

Having described the various processes of the SECURE collaboration model, in
this section we turn our attention to the processing of evidence about principals’
behaviour, a core part of the trust evaluation process. However, before we can
examine how the processing is carried out it is imperative to examine the exact
nature and characteristics of the evidence we consider.

The Nature of Evidence. In general, evidence refers to any kind of infor-
mation about principals’ past behaviour. We call the principal in question the
subject of the evidence. Evidence can be characterised as either direct or indirect.
The former refers to evidence about a subject’s behaviour that has been directly
witnessed by a principal, the witness. The latter refers to evidence about a sub-
ject’s behaviour that has not been directly witnessed. In fact, it refers to third

Trust Lifecycle Management in a Global Computing Environment 297

party information about a subject’s behaviour. From these definitions it should
be clear that the characterisation of evidence as direct or indirect is relative, in
other words direct evidence propagated to another principal becomes indirect.

The distinction between direct and indirect evidence is quite important. The
validity of direct evidence is unquestionable and should be treated as fact, while
indirect evidence can be questionable and should be treated as an opinion about
facts. Consequently the validity of indirect evidence depends heavily on the
source of the information, the principal expressing the opinion. This difference
suggests that during trust evolution indirect evidence must be treated with cau-
tion, as different principals may evaluate differently the same facts. Moreover,
some principals may even distort the facts.

The trust management literature identifies three types of evidence:

1. Observations. They refer to direct evidence. They are personal experiences
usually gathered through interaction with a principal. Within the SECURE
collaboration model, an interaction between two principals is in the form of
trust-mediated actions. Each of these actions has a set of possible outcomes,
each with its own costs or benefits (see section 2.1). Since, the trustworthiness
of the principal determines the likelihood of each outcome occurring, we take
the view that an observation is in fact the outcome that occurred at the end
of the interaction.

2. Recommendations. They refer to indirect evidence passed between a prin-
cipal W , the witness, and a principal R, the receiver, describing a judgement
on principal Subj, the subject. In the general case, this evidence can take
any form, but in this document we only consider the case of a trust value
expressing W ’s trust in Subj.

3. Reputation. It refers also to indirect evidence that takes the form of a
measure of the overall trustworthiness of a subject Subj. This measure can
be expressed as:

r(Subj) =
∑

Pi∈C

m(Pi)(Subj) (3)

Note that we only assume a community of principals C, which is a subset of
the whole principal population P. This is in line with the lack of complete
information characterising global computing.

At this point we should note that both recommendations and reputation are
based on the ability of principals to exchange trust values. For any such exchange
to be meaningful the trust values need to share a common representation and
all principals need to have a shared understanding of their meaning. Conse-
quently, it should be clear that a shared structure for the trust value domain is
the minimum requirement for the meaningful exchange of trust values between
principals. Hence, in the SECURE collaboration model we take the view that
all principals share the same structure of the trust value domain, which means
the following:

1. There is a single format of trust values.
2. The value range of the trust values is the same for all principals.

298 S. Terzis et al.

3. The trust and certainty orderings are the same for all principals. So, if t1 + t2
and t1 � t2 for principal Pi then t1 + t2 and t1 � t2 for all other principals.

The above assumptions guarantee to a certain degree meaningful exchange
of evidence in the form of trust values between principals within a particular
application.

The three different types of evidence, although all valuable for trust formation
and evolution, do not have the same value. In general, putting aside consider-
ations regarding the freshness of evidence, we would expect direct evidence to
be a lot more valuable than indirect evidence due to its unquestionable char-
acter. This means that we would consider observations to be the most valuable
type of evidence and as a result to carry the most weight in the evolution pro-
cess. In fact, we could even see situations where observations would be the only
type of evidence considered. The problem with observations is that they require
the participation of the witness, making them the most difficult type to collect.
It usually takes a lot of time before any principal acquires adequate personal
experience.

The exchange of experiences between principals can enhance their perception
of the world, especially in cases where personal experience is limited. In these
cases recommendations and reputation can be particularly valuable. However,
their value is predicated on the assumption that the subject is likely to behave
similarly towards both the witness and the receiver. If the assumption does not
hold, then the exchanged experiences are worthless. In the general case, there are
no guarantees that this assumption holds. Identifying which principals witness
similar behaviour from certain subjects is in most cases very difficult. In any
case, the fact that exchanged experiences are indirect types of evidence means
that the trustworthiness of their source affects their validity and as a result their
value. This is acknowledged in the literature and has led to the introduction of
the concept of discounting for recommendations [19, 21, 36]. Discounting usually
takes the form of an operator which considers the receiver’s perception of the
integrity or trustworthiness of the witness, namely the trust in the recommender.
We should note here that this type of trust is usually considered as separate
from the trust that is normally associated to principals. It reflects how good
the principal is as a source of recommendations, rather than how likely it is to
behave well.

Taking the above into account the SECURE collaboration model incorporates
a notion of trust in the recommender and introduces a recommendation adjust-
ment stage in the processing of indirect evidence. This process takes place before
the evaluation of the recommendations (see next section) and is along similar
lines to the notion of semantic distance between recommendation and experience
as defined in [1]. However, we should note that although the use of an adjust-
ing operator that takes into consideration the trust in the recommender may be
used to increase the value of recommendations, in the case of reputation things
are even more complicated. Reputation aggregates a number of recommenda-
tions in order to follow the same approach we need to adjust each constituent
recommendation separately. This requires that we know exactly which opinions

Trust Lifecycle Management in a Global Computing Environment 299

were combined to produce the measure of overall trustworthiness, who were the
sources of these opinions and how much each of them contributed to the overall
measure. If this is the case, then reputation can be treated in a similar manner
to individual recommendations. However, in most cases, this level of detailed
information is not available, and as such reputation is not very valuable for evo-
lution. This is the main reason why reputation is not considered in the SECURE
project.

Evidence Processing. Evidence processing is carried out in two stages. First,
the evidence is evaluated with respect to the current trust values for the principal
in question. The aim of the evaluation is to determine whether the associated risk
profile for current trust value of the principal is in accordance to the observed
behaviour of the principal. For this purpose we introduce the notion of attraction.
As a result the evidence evaluation stage is in fact where the calculation of the
attraction of the evidence takes place. Second, the evaluation of the evidence, i.e.
its attraction, is used to evolve the current trust value. The evolution is towards
a new trust value whose associated risk profile better matches the principal’s
observed behaviour.

More specifically, we can view the evidence evaluation process as a function,
which assuming that Evd is a set of pieces of evidence, and Attr is the set of
attractions, is defined as follows:

evaluate : Evd× T → Attr (4)

Since, according to the theoretical trust model our trust values reflect both
trust and certainty, we can express the impact of attraction in both trust and
certainty terms. Therefore, we can view attraction as a two-dimensional measure
consisting of a trust dimension (τ) and an certainty dimension (σ). On each
dimension attraction can be characterised:

– In the certainty dimension as either reinforcing or contradicting. In the for-
mer case, the new evidence cannot increase the certainty of the current trust
value, i.e. Tcurr � Tnew. In the latter case, the new evidence cannot reduce
the certainty of the current trust value, Tnew � Tcurr.

– In the trust dimension as either positive or negative. In the former case,
the new evidence cannot reduce the trustworthiness of the current trust
value, Tcurr + Tnew. In the latter case, the new evidence cannot increase the
trustworthiness of the current trust value, Tnew + Tcurr.

We refer to the above characterisation of attraction as the direction of the
attraction. The reason for this is that if we consider a trust domain (T ,+,�),
then these characterisations are excluding a number of elements of T producing
a subset of acceptable trust values in terms of certainty and trust respectively.
So, if we define Tσ, Tτ ⊆ T to be the set of acceptable trust values in terms of
certainty and trust respectively, then the characterisations dictate that the new
trust value must belong to the intersection of these sets, Tnew ∈ Tσ ∩ Tτ . Or in
other words, they determine the direction we should move on the trust ordering

300 S. Terzis et al.

lattice or the certainty ordering c.p.o. (refer back to section 2.1) to find our new
trust value Tnew.

In the case of recommendations the calculation of their attraction is straight-
forward because recommendations are in fact trust values. As a result, we can
evaluate a recommendation, Rec, by taking advantage of the structure of the
trust domain (T ,+,�) and directly comparing it to the current trust value in
terms of certainty, �, and trust, +. This comparison will determine the direction
of its attraction as follows:

– In terms of certainty, we calculate the greatest lower bound (glb) of Tcurr

and Rec. Note that because (T,�) is a complete partial order with a least
element, the glb of any two trust values t1, t2 ∈ T is guaranteed to exist.
Then, there are three cases:
1. If the glb(Tcurr, Rec) = Tcurr, then the attraction of the evidence is

reinforcing.
2. If the glb(Tcurr, Rec) = Rec, then the attraction of the evidence is still

reinforcing, but in this case Rec does not really add anything to our
current trust value and can be safely ignored.

3. Otherwise, the attraction of the evidence is contradicting.
In both the first and the third of these cases the new trust value Tnew must
have the properties: glb(Tcurr, Rec) � Tnew and Tnew � Tcurr.

– In terms of trust, Tcurr and Rec are either comparable or incomparable.
1. If they are comparable, then:

• If Tcurr + Rec, then the attraction of the evidence is positive.
• If Rec + Tcurr, then the attraction of the evidence is negative.

Note that in this case the new trust value Tnew must be inside the interval
[Tcurr, Rec] or [Rec, Tcurr] respectively.

2. If they are not comparable, then instead of comparing Tcurr and Rec we
compare Tcurr to either the glb or the least upper bound (lub) of Tcurr

and Rec. Note that because of the fact that the (T,+) is a complete
lattice, both the glb and the lub of any two trust values t1, t2 ∈ T are
guaranteed to exist. The choice between the glb and lub is a dispositional
characteristic of the principals. According to this characteristic principals
are classified as either trusting, those selecting the lub, or distrusting,
those selecting the glb. Then there are the following two cases:
(a) If the glb was selected, then the attraction of the evidence is negative

and the new trust value Tnew must be inside the interval defined by
the glb and the current trust value Tcurr, Tnew ∈ [glb(Tcurr, Rec),
Tcurr].

(b) If the lub was selected, then the attraction of the evidence is positive
and the new trust value Tnew must be inside the interval defined by
the current trust value Tcurr and the lub, Tnew ∈ [Tcurr, lub(Tcurr,
Rec)].

The above determines the direction of the attraction, but it does not deter-
mine the value of attraction, ‖attr‖. Our trust model does not provide us with

Trust Lifecycle Management in a Global Computing Environment 301

a measure of distance between trust values, and as a result cannot be used for
determining the value of the attraction. For this reason, we use the risk domain
in order to determine the value of the attraction. For this purpose we define the
notion of risk profile distance. Assuming risk profiles R1 and R2 we define their
distance as:

diff(R1, R2) =
∑
∀o∈O

| Pr1(x)− Pr2(x) | (5)

where Pr1(x) and Pr2(x) are the probabilities of outcome o according to risk
profile R1 and R2 respectively, and O is the set of possible outcomes. In this
case, the value of a recommendation’s Rec attraction, must be proportionate to
the distance of the risk profiles associated to Tcurr and Rec:

‖attr‖ ∝ diff(RTcurr
, RRec) (6)

The exact function for the calculation of the value is up to the application
developer to define.

In the case of observations, which take the form of an observed outcome,
the calculation of their attraction is a bit more complicated. This calculation in
general can take the following two forms:

1. Direct Evaluation. In this case the attraction of an observation is charac-
terised as positive if the observed outcome incurred a benefit and negative
otherwise. Further, it is characterised as reinforcing if the likelihood of the
observation, Obs, according to the risk profile of the current trust value,
PrRTcurr

(Obs) ≥ 50%. Otherwise, it is contradicting. Its value should be
proportionate to the distance of the likelihood of the observation according
to the risk profile of the current trust value from 50%,

‖attr‖ ∝| PrRTcurr
(Obs)− 50% | (7)

This form of observation evaluation is demonstrated in the e-purse sce-
nario (see section 3).

2. Indirect Evaluation. In this case, we first produce an evidential trust value,
Tevd, from the observation. Then we evaluate the attraction of Tevd following
the approach described above in the evaluation of recommendations2. More
specifically, we choose as Tevd, the trust value, Ti that is associated to the
risk profile, Ri, in which the observation, Obs has the highest likelihood:

Tevd = T{Rmax|PrRmax (Obs)=max
i

(PrRi
(Obs))} (8)

If we follow this approach, then it be should clear that considering a single
observation means that Tevd does not offer significant insight into the trust-
worthiness of the principal in question. Therefore, it seems reasonable to

2 Note that we can take the view that the recommendation adjustment does in fact
produce an evidential trust value, which is subsequently used in the evaluation pro-
cess.

302 S. Terzis et al.

collect a number of observations before the evaluation takes place. The col-
lected observations construct a profile of observed behaviour. In this profile,
the number of occurrences of each particular observation over the total num-
ber of observations under evaluation determines its likelihood. This profile
of observed behaviour can be compared to the various profiles of expected
behaviour, i.e. the risk profiles. The trust value associated to the risk pro-
file closest to the observed one, according to the risk profile distance (see
equation 5), is the evidential trust value.

The final stage in the processing of evidence is to update the current trust
value Tcurr to a new trust value Tnew according to the attraction of the evidence.
This process is carried out by an evolve() function. Following a similar approach
to the one described in [18], there are two alternative definitions for such a
function:

1. As a trust evolution function that considers a sequence of attractions in order
to produce a trust value. More precisely, assuming that AttrSeq represents
sequences of attractions:

evolve : AttrSeq → T (9)

Considering sequences of attractions instead of sets allows us to define trust
evolution functions that can distinguish the past and have fixed memory.
For example, we can introduce time discounting of evidence, so that more
recent evidence counts for more, or we can drop evidence if it is considered
to distant in the past.

2. As a trust update function that considers the current trust value and an
attraction in order to produce a new trust value. More precisely, assuming
that Attr is the set of attraction values:

evolve : T ×Attr → T (10)

Trust update functions have infinite memory, since all past evidence is re-
flected in the trust values. This is the main reason why in the e-purse appli-
cation scenarios in section 3 we use a trust update function. In fact, in this
scenario the evaluate() and the evolve() function have been merged into a
single function that provided with an observation, directly produces the new
trust value from the current one. Note also that for any trust update func-
tion we can generate a trust evolution function by iteration starting from
each initial trust value.

The exact nature of either type of evolve() function is up to the application
developers to define. When defining the exact function they should consider
the work of Jonker and Treur [18], who analyse trust evolution and update
functions and identify a number of properties that such functions may have. More
importantly, each of the identified properties allows the modelling of alternative
principal attitudes towards trust. This type of modelling can also be applied to
our trust formation and evolution approach.

Trust Lifecycle Management in a Global Computing Environment 303

Following a similar approach to [18], in our collaboration model we identify
two aspects that allow us to characterise the many types of principal attitudes
towards trust. We refer to these aspects as the dispositional characteristics of a
principal. These characteristics are:

1. Trusting Disposition. In terms of trusting disposition, principals are clas-
sified as either generally trusting or generally distrusting. This is reflected
in the initial trust value that they use for the formation process and the
selection of the glb or lub in the case of incomparable trust value during
evidence evaluation (see the section on recommendation evaluation above).
With respect to the former, a generally trusting principal would select an
initial trust value T that conveys more trust than “unknown”, ⊥+ T , while a
generally distrusting principal one that conveys less trust than “unknown”,
T +⊥. With respect to the latter, a generally trusting principal would select
the lub, while a generally distrusting principal the glb.

2. Type of Trust Dynamics. The types of trust dynamics reflect how easily a
particular principal’s trust in others builds and erodes in the light of evi-
dence. In general, principals may build or erode trust either quickly, slowly,
or in balance. This means that a principal that quickly (slowly) builds trust
would require a small (large) number of positive evidence to consider another
principal as highly trusted. Further, a principal that quickly (slowly) erodes
trust would require a small (large) number of negative evidence to consider
another principal as highly distrusted, meaning that it is quite unforgiving
(forgiving) of bad behaviour. Jonker and Treur suggest in [18] such a model
of different types of trust dynamics. Moreover, they identify the following
types:
– Blindly Positive. A principal that after a number of good experiences

with another principal will always consider it trustworthy.
– Blindly Negative. A principal that after a number of bad experiences

with another principal will always consider it untrustworthy.
– Slow Positive, Fast Negative. A principal that requires a large number of

good experiences to build trust and a small number of bad experiences
to erode trust.

– Fast Positive, Slow Negative. A principal that requires a small number
of good experiences to build trust and a large number of bad experiences
to erode trust.

– Balanced Slow. A principal that requires both a large number of good
experiences to build trust and a large number of bad experiences to erode
trust.

– Balanced Fast. A principal that requires both a small number of good
experiences to build trust and a small number of bad experiences to
erode trust.

In order to enable the expression of the above dispositional characteristics in
our collaboration model, we introduce dispositional parameters in the evolve()
and evaluate() functions. The exact nature of these parameters will of course
depend on the exact definition of these functions and the characteristics of the

304 S. Terzis et al.

particular application scenario. Therefore, it is up to application developers to
define them. The use of dispositional parameters is demonstrated in the e-purse
application scenario with the use of αp, αn and β that determine how slow or
fast trust builds, erodes and becomes certain respectively.

2.4 Trust Formation

Although, in the previous section we examined in detail how trust evolves in
the light of evidence about principals’ behaviour, a complete approach to the
management of trust lifecycle needs also address how trust is initially formed. In
other words, we have seen that the processing of evidence and the evolution of
trust values is with respect to the current trust value, which poses the question
how can an initial trust value for a particular principal be derived. We refer to
the process of deriving the initial trust value for a principal as trust formation.

The trust model (see section 2.1) has two very important properties that the
trust formation process can utilise:

1. The ability to include references in the local trust policies of principals. These
references enable principals to specify trust values as relations over the trust
values of other principals.

2. The requirement to define over the trust domain T an ordering relation
�, according to which the trust values of T form a complete partial order
with a least element ⊥ (“unknown”). This least element represents the case
where there is complete uncertainty about the behaviour of an principal. Its
inclusion in the trust domain means that we have to consider and explicitly
evaluate what are the risks that an interaction with an unknown principal
entail.

From a trust formation point of view, the first property allows any principal
to rely on others using their opinions through references. For as long as a prin-
cipal does not have adequate evidence to have an opinion of its own about the
trustworthiness of another principal it can remain reliant on others. However,
there are no guarantees that the referenced principals would have an opinion
about the trustworthiness of the principal in question either. Moreover, even if
they have an opinion there are no guarantees that the principal would be able
to communicate with them to find out what their opinion is. To make matters
worse, there is always the case that a whole chain of references may have to be
followed in order to discover what this opinion is, thus increasing the chances of
a communication failure along the way. In these situations the second property
becomes particularly important. It provides us with a particular trust value,
namely “unknown” ⊥, that we can always resort to.

In addition to or instead of relying on the opinions of a particular set of princi-
pals, as it would be the case when using references, we could also initiate a search
for principals that have an opinion about the trustworthiness of the principal in
question. In other words we can initiate a process of gathering recommendations
about the principal. However, having collected a number of recommendations
about the principal, the problem remains on how these recommendations can be
combined in order to form an opinion about its trustworthiness.

Trust Lifecycle Management in a Global Computing Environment 305

The fact that our trust always includes the “unknown” trust value means that
we always have a current trust value for all principals, even previously unknown
ones. This allows us to take the view that the trust formation process is in fact
just a special case of trust evolution one. This means that we can process the
collected recommendations about unknown principals in exactly the same way
as recommendations about known ones with the only difference being that we
use ⊥ (“unknown”) as the current trust value (see section 2.3).

The proactive collection of recommendations for previously unknown prin-
cipal as part of the trust formation process, raises the issue of how these rec-
ommendations can be gathered. There are a number of approaches we could
follow:

– We could bootstrap principals with a list of similar entities that could be
likely sources of recommendations. However, it might be the case that none
of these entities can be contacted at a particular point in time.

– We could ask unknown principals to provide us with a list of entities that
could give us recommendations about them. However, this might be mislead-
ing, since no principal would recommend anyone they had a bad interaction
with.

– We could ask our neighbours to suggest good recommenders. Note that the
neighbourhood might have different meanings. For example, it may be com-
prised of our acquaintances or directly accessible entities in an ad-hoc net-
work, etc. However, there are no guarantees that our neighbourhood is a
good source of recommendations.

– We could also introduce brokers that can suggest recommenders for various
types of interactions. In this case, these brokers play the role of trusted third
parties.

– In some situations, however, when trustworthy recommenders are not known,
a broadcasted request for recommendations might be our only option. This
approach offers no guarantees whatsoever and it would probably be our last
resort.

Since each one of the above approaches has its advantages and disadvantages,
we may need to employ a number of them at the same time in order to form
a more accurate picture about the trustworthiness of the principal in question.
In general, we should be aware that the gathering of recommendations and is a
tricky issue regarding careful consideration (see section 4.3 in [32] for a discussion
on the tradeoffs involved in this issue).

3 E-Purse Application Scenario

Having presented our approach to the management of trust lifecycle in the pre-
vious section, in this section we show how our approach can be applied in an
e-purse application scenario. We should point out that this is just an example
of the application of our approach and as we have already pointed out does not

306 S. Terzis et al.

cover all the various aspects. However, we believe that it is useful in demonstrat-
ing how the abstract concepts of the approach can be applied in a concrete case.

The scenario involves the use of an e-purse when a passenger is interacting
with a bus company. The purpose of the e-purse is to hold a relatively small
amount of e-cash (in this scenario the e-purse is limited to 100 euro) that the
owner can use as if it were real cash for buying bus tickets (see figure 1).

Fig. 1. E-purse scenario interaction

Users can refill their e-purse by contacting their bank provided that there is
enough cash in their account. There are three different principals involved in this
scenario: the passenger (owner) of the e-purse, the bus company and the bank. In
this scenario we are only interested in modelling the trust relationship between
the bus company and the passenger. We consider the example interaction where
passengers want to purchase tickets using their e-purse.

E-cash is based on a protocol that although it protects user anonymity during
normal transactions, enables identification of guilty parties in fraudulent trans-
actions. Every time the bus company accepts e-cash in a transaction it takes the
risk of losing money due to fraud. Therefore, for the bus company to decide how
to respond to a purchasing request, it needs to determine the trustworthiness of
the passenger. Principals can assign different levels of trust to different entities
based on the available information so as to evaluate the level of risk transactions
involving the user entail.

3.1 Trust Values

In the e-purse scenario the range of basic trust values is [0, 100] reflecting the
amount of e-cash that the bus company is willing to accept from the requesting

Trust Lifecycle Management in a Global Computing Environment 307

user. Following the interval construction technique from [7], we construct our
trust values as intervals [d1, d2] of the range of basic trust values. An interval
[d1, d2] indicates that the bus company is quite certain about the validity of
amounts up to d1 of e-cash , fairly uncertain about the validity of amounts
between d1 and d2 and fairly certain that any amount above d2 will be invalid.
So, for any ticket purchasing request of more than d2 the user has to pay in cash.
It should be clear that the use of such trust values really simplifies the decision
making process.

3.2 Risk Analysis and Decision Making

The essential step in trust exploitation is to determine expected behaviour on the
basis of trust intervals. This is achieved by using the trust interval to determine
the risk of interacting with a particular principal. The assumption is that the
passenger’s trustworthiness reflects the expected loss or gain during a transaction
involving him or her. The costs involved in an interaction range from -100 to
100, denoting the maximum gain or loss for the bus company.

In the general case, the calculated risk allows entities to decide whether or
not to proceed with an interaction. In this scenario, a simplified view is taken,
whereby the trust value directly determines the amount of e-cash a bus company
is willing to accept. The decision making process for a ticket of value x regarding
a passenger with trust value [d1, d2] is as follows:

– If x < d1 then the whole amount of the transaction can be paid in e-cash.
– If x > d2 then the option of paying in e-cash is not available and the full

amount has to be paid in cash.
– If d1 < x < d2 then the likelihoods of the possible outcomes are examined.

Note that there are only two possible outcomes, the e-cash provided by the
passenger will be either valid or invalid. For the calculation of the likelihoods,
we divide the range from d1 to d2 into a number of units, n. For example
n could be equal to the price of the cheapest ticket, say 5 euro. In this
case, the number of units is determined by dividing the whole range over
five (d1 − d2)/5. The likelihood of invalid e-cash for each unit is (m/n),
where m = 0, 1, .., n (see figure 2). Note that the likelihood of invalid e-cash
increases from d1 (with a probability of 0 for invalid e-cash) to d2 (with
a probability of 1 for invalid e-cash). Considering these likelihoods for the
possible outcomes the bus company can place a threshold of acceptable risk.
So, it will only accept e-cash for transaction with risk below the threshold.

n

m

d1 d2
0 100

Fig. 2. Risk Analysis

308 S. Terzis et al.

3.3 Trust Evolution

In this scenario we again only consider observations and we combine the two
processes of trust evolution, namely evidence evaluation and trust evolve. As a
result, the attraction of every observed outcome, whether the provided e-cash
were valid or not, raises or drops the boundaries of the current trust value Tcurr.

In accordance with section 2.3, if the e-cash was valid then the attraction
of the observation is considered positive, in which case we expect the lower and
upper bound of Tcurr to either remain unchanged or to be raised. While, if the e-
cash was invalid the attraction of the observation is considered negative, in which
case we expect the lower and upper bound of Tcurr to either remain unchanged
or to be dropped. Moreover, if the outcome was expected, i.e. its likelihood was
more than 50%, then the attraction of the observation is considered reinforcing,
otherwise is considered contradicting. Let us assume that m1 and m2 are the
movements of the lower and upper bound of Tcurr respectively. Then, in the case
of reinforcing attraction we expect the size of the interval (d2 − d1) to remain
unchanged or be reduced, i.e. m1 > m2. While, in the case of contradicting
attraction we expect the size of the interval to remain unchanged or be increased,
i.e. m1 < m2. This is summarised in Table 1.

Table 1. Summary of observation evaluation

attraction direction direction of boundary movement interval size
positive, reinforcing −→ m1 > m2

positive, contradicting −→ m1 < m2

negative, reinforcing ←− m1 > m2

negative, contradicting ←− m1 < m2

For example, let us assume that t denotes the amount of e-cash in the observed
transaction and Tcurr = [d1, d2]. Then, the movements m1 and m2 of the lower
and upper bound of Tcurr could be determined as follows:

1. If t < d1, then
– If the e-cash is valid, then the attraction is reinforcing and positive.

In this case, the observation does not really contribute any additional
information about the principal and is therefore ignored, i.e.:

m1 = 0 and m2 = 0 (11)

Note that if we do not ignore this kind of observations, but instead use
them to raise the trustworthiness of the principal, then we are exposing
ourselves to the typical trust exploitation scam, where a large number of
very small value transactions could allow a transaction of a substantial
value to take place even though there is no evidence to support this
decision.

Trust Lifecycle Management in a Global Computing Environment 309

– If the e-cash is invalid, then the attraction is contradicting and negative.
In this case:

m1 = αn × (t− d1) and m2 = β ×m1 (12)

2. If t > d1, then
– If the e-cash is valid and the likelihood of t being valid is less than 50%,
Pro(t, valid) < 50%, then the attraction is positive and contradicting.
In this case:

m1 = β ×m2 and m2 = αp × ((100− d2)/(d2 − t))× (1− Pro(t, valid))
(13)

– If the e-cash is valid and the likelihood of t being valid is greater than
50%, Pro(t, valid) > 50%, then the attraction is positive and reinforcing.
In this case:

m1 = αp × (t− d1)× (1− Pro(t, valid)) and m2 = 0 (14)

– If the e-cash is invalid and Pro(t, invalid) > 50%, then the attraction is
negative and reinforcing. In this case:

m1 = 0 and m2 = αn × (t− d2)× (1− Pro(t, invalid)) (15)

– If the e-cash is invalid and Pro(t, invalid) < 50%, then the attraction is
negative and contradicting. In this case:

m1 = αn × (d1/(d1− t))× (1−Pro(t, invalid)) and m2 = β×m1 (16)

Note that αp, αn and β range from [0, 1] and are dispositional parameters
that determine how slow or fast are the positive, negative and certainty dynamics
respectively. If αp > 0.5 then we are talking about fast positive dynamics, while
if αp < 0.5 we are talking about slow positive dynamics. Similarly, depending
on the value of αn we are talking about fast negative or slow negative dynamics.
Moreover, if αp = αn then we are talking about balanced slow or fast dynamics
(see section 2.3). At the same time, if β is small we reduce the size of the trust
interval quickly, while if β is large we reduce it slowly.

A Specific Example. Suppose that a passenger with a trust value [20, 70]
paid valid e-cash worth 40 euro to the bus company. Supposing that the range
between 20 and 70 is divided into 5 units each with a size of 10, the likelihoods
of the two outcomes, valid or invalid e-cash, are: 20% for invalid and 80% for
valid. So, the attraction of this observation is positive and reinforcing. Applying
the functions described above using αp = 0.5, we have m1 = 2, m2 = 0. So, the
new trust value Tnew = [d1 +m1, d2 +m2] = [20 + 2, 70 + 0] = [22, 70].

4 Comparison to the State of the Art

Part of the motivation for this was work was the weaknesses of certificate-based
approaches to trust management [4, 5, 20, 22, 28] in terms of how trust is formed

310 S. Terzis et al.

and evolves over time. These weaknesses deemed these approach inadequate for a
global computing environment. It should clear from the above presentation that
the SECURE approach to trust lifecycle management with its evidence-based
approach and its emphasis on evidence processing and trust formation addresses
these weaknesses. However, in recent years there have been other attempts at
more intuitive computational models of trust, with a basis in the history of past
interactions along similar lines to the SECURE approach [1, 11, 12, 17, 18, 19,
21, 23, 27, 31, 24, 36, 38]. These attempts also improve on the certificate-based
approaches and have introduced particular concepts that we have also found
useful and have incorporated into our model, for example:

– The explicit modelling of risk [12, 17].
– The explicit modelling of uncertainty [19, 38].
– The notion of trust in the recommender and recommendation adjustment

[1, 19, 21, 36]
– The use of trust update and trust evolution function for the incorporation

of evidence to the current trust value [18].
– The various types of trust dynamics [18].

Besides the fact that the SECURE approach is a unique combination of the
above concepts, it has also the following discriminating features:

– It emphasises principal recognition over authentication.
– It defines a clear relationship between trust and risk.
– It introduces the notion of attraction, which guides the processing of evidence

both in terms of trustworthiness and certainty.

These characteristics are what makes the SECURE approach to trust lifecycle
management more suitable for a global computing environment.

5 Conclusions and Future Work

In conclusion, the goal in a global computing environment is to enable entities to
collaborate by allowing them to make autonomous access control decisions with
partial information about their potential collaborators. The SECURE project
aims to achieve this goal by using trust as the mechanism for managing the risks
and the uncertainty that collaborations in such an environment entail. Core in
this mechanism is the ability to manage the trust lifecycle as a procedure of
collecting and processing evidence. For this purpose a preliminary collaboration
model has been defined which addresses both theoretical and operational issues
of trust lifecycle management, namely trust formation, trust evolution and trust
exploitation. In this paper we have only focused on the theoretical issues of the
collaboration model. For a presentation of the operational issues we point the
interested reader to section 4 of [32]. At the heart of evidence processing ac-
cording to the collaboration model is the notion of attraction, which considers
the effects of evidence about the behaviour of a particular principal on its cur-
rent trust value both in terms of trustworthiness and certainty. The notion of

Trust Lifecycle Management in a Global Computing Environment 311

attraction along with the emphasis on principal recognition and the definition of
a clear relationship between trust and risk is what discriminates the SECURE
project from other work on evidence-based trust management and makes it more
appropriate for a global computing setting.

The preliminary collaboration model has been instrumental in the SECURE
project in driving the developments for both the trust and the risk model as
well as the SECURE framework architecture and kernel implementation. It has
highlighted a number of issues particularly regarding the adopted relationship
between trust and risk, which refinements of the underlying trust and risk models
are currently trying to address. For the developments on this front we point the
interested reader to [8] and [2] respectively.

We are currently in the process of evaluating our approach to evidence pro-
cessing. The evaluation is along two dimensions. First, we examine the applica-
bility of our model on a number of different application scenarios from [6]. We
have already applied our model to a Smart Space application scenario (see sec-
tion 6.1 in [32]). Second, we are developing a simulation framework, which will
allow us to experiments with a variety of alternative ways of processing evidence,
i.e. the various functions that the model leaves for the application developer to
define. We have already developed a simulator for the e-purse application sce-
nario presented above. The initial results of the simulation are encouraging and
we are planning to report our conclusions in more detail in the near future.

Finally, regarding the development of the collaboration model itself our main
goal for the near future is to introduce a notion of context to the model. Con-
text aims to capture the situational character of trust, i.e. the fact that the
trustworthiness of a principal varies in different situations. For this reason we
view context as situational modifier of principals’ behaviour. Some preliminary
considerations about context have been already presented in section 3.2 of [32],
however the whole issue certainly requires further investigation.

References

1. A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences-Volume
6, page 6007. IEEE Computer Society Press, January 2000.

2. Jean Bacon, Andras Belokosztolszki, Nathan Dimmock, David Eyers, David In-
gram, and Ken Moody. Preliminary definition of a trust-based access control
model. SECURE Deliverable 3.2, 2003.

3. Jean Bacon, Nathan Dimmock, David Ingram, Ken Moody, Brian Shand, and Andy
Twigg. Definition of risk model. SECURE Deliverable 3.1, 2002.

4. Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. Keynote: Trust man-
agement for public-key infrastructures. In Secure Internet Programming: Issues
in Distributed and Mobile Object Systems, volume 1550 of LNCS, pages 59–63.
Springer-Verlag, 1998.

5. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173,
Los Alamitos, USA, May 1996. AT&T.

312 S. Terzis et al.

6. C. Bryce, V. Cahill, G. Di Marzo Serugendo, C. English, S. Farrell, E. Gray, C. D.
Jensen, P. Nixon, J.-M. Seigneur, S. Terzis, W. Wagealla, and C. Yong. Application
scenarios. SECURE Deliverable 5.1, 2002.

7. Marco Carbone, Oliver Danvy, Ivan Damgaard, Karl Krukow, Anders Mller, Jes-
per B. Nielsen, and Mogens Nielsen. A model for trust. SECURE Deliverable 1.1,
2002.

8. Marco Carbone, Karl Krukow, and Mogens Nielsen. Revised computational trust
model. SECURE Deliverable 1.3, 2004.

9. Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A formal model for trust
in dynamic networks. In Proceedings of the International Conference on Software
Engineering and Formal Methods, pages 54–63, Brisbane, Australia, September
2003.

10. Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A formal model for trust
in dynamic networks. RS RS-03-4, BRICS, DAIMI, January 2003. 18 pp.

11. Rita Chen and William Yeager. Poblano - a distributed trust model for peer-to-peer
networks. Technical report, Sun Microsystems, 2001.

12. Theo Dimitrakos. System models, e-risks and e-trust. towards bridging the gap? In
Proceedings of the 1st IFIP Conference on e-Commerce, e-Business, e-Government.
Kluwer Academic Publishers, October 2001.

13. Nathan Dimmock. How much is ‘enough’? Risk in trust-based access control.
In Proceedings of the IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises: Enterprise Security (Special Session
on Trust Management), Linz, Austria, June 2003.

14. Colin English, Sotirios Terzis, and Waleed Wagealla. Engineering trust-based col-
laborations in a global computing environment. In Stefan Poslad Christian Jensen
and Theo Dimitrakos, editors, Proceedings of the Second International Conference
on Trust Management, volume 2995 of LNCS, pages 120–134, Oxford, UK, March
2004. Springer.

15. Colin English, Waleed Wagealla, Paddy Nixon, Sotirios Terzis, Andrew McGet-
trick, and Helen Lowe. Trusting collaboration in global computing. In Paddy
Nixon and Sotirios Terzis, editors, Proceedings of the First International Con-
ference on Trust Management, volume 2692 of LNCS, pages 136–149, Heraklion,
Crete, Greece, May 2003. Springer.

16. Diego Gambetta. Can we trust trust? In Diego Gambetta, editor, Trust: Making
and Breaking Cooperative Relations, pages 213–237, Oxford, 1990. Basil Blackwell.

17. Tyrone Grandison and Morris Sloman. Specifying and analysing trust for internet
applications. In Proceeedings of the 2nd IFIP IEEE Conference, pages 145–157,
October 2002.

18. Catholijn M. Jonker and Jan Treur. Formal analysis of models for the dynamics
of trust based on experiences. In Francisco J. Garijo and Magnus Boman, editors,
Proceedings of the 9th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World : Multi-Agent System Engineering (MAAMAW-99), volume
1647 of LNCS, pages 221–231. Springer-Verlag, June 1999.

19. Audun Jøsang. A logic for uncertain probabilities. Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 9(3):279–311, June 2001.

20. Lalana Kagal, Jeffrey L Undercoffer, Filip Perich, Anupam Joshi, and Tim Finin. A
security architecture based on trust management for pervasive computing systems.
In Grace Hopper Celebration of Women in Computing, October 2002.

Trust Lifecycle Management in a Global Computing Environment 313

21. Michael Kinateder and Kurt Rothermel. Architecture and algorithms for a dis-
tributed reputation system. In Paddy Nixon and Sotirios Terzis, editors, Proceed-
ings of the First International Conference on Trust Management, volume 2692 of
LNCS, pages 1–16, Heraklion, Crete, Greece, May 2003. Springer.

22. Ninghui Li and John C. Mitchell. RT: A role based trust management frame-
work. In Proceedings of the 3rd DARPA Information Survivability Conference and
Exposition (DISCEX III). IEEE Computer Society Press, April 2003.

23. Stephen Marsh. Formalising Trust as a Computational Concept. PhD thesis,
University of Stirling, 1994.

24. M. Marx and J. Treur. Trust dynamics formalised in temporal logic. In L. Chen
and Y. Zhuo, editors, Proceedings of the 3rd International Conference on Cognitive
Science, ICCS, pages 359–363. USTC Press, Beijing, 2001.

25. John McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software
Engineering. John Wiley & Sons, 1994.

26. Ravi Sandhu. Access control: The neglected frontier. In Proceedings of the First
Australian Conference on Information Security and Privacy, volume 1172 of LNCS,
pages 219–227, Wollong, Australia, June 1996. Springer.

27. V. Schmatikov and C. Talcott. Reputation-based trust management (extended
abstract). In Proceedings of the Workshop on Issues in the Theory of Security
(WITS), 2003.

28. K. E. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills, and
L. Yu. Requirements for policy languages for trust negotiation. In Proceedings of
the 3rd International Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), pages 68–79, Monterey, CA, USA, June 2002.

29. J.-M. Seigneur, S. Farrell, C. Jensen, E. Gray, and C. Yong. End-to-end trust
starts with recognition. In Proceedings of the First International Conference on
Security in Pervasive Computing, 2003.

30. B. Shand, N. Dimmock, and J. Bacon. Trust for Ubiquitous, Transparent Collabo-
ration. In Proceedings of the First IEEE Annual Conference on Pervasive Comput-
ing and Communications (PerCom 2003), pages 153–160, Dallas-Ft. Worth, TX,
USA, March 2003.

31. Yao-Hua Tan and Walter Thoen. Formal aspects of a generic model of trust for
electronic commerce. In Proceedings of the 33rd Hawaii International Conference
on System Sciences-Volume 6, page 6006. IEEE Computer Society Press, January
2000.

32. Sotirios Terzis, Waleed Wagealla, Colin English, and Paddy Nixon. The secure
collaboration model. Technical Report Smartlab-03-2003, Dept. of Computer and
Information Sciences, University of Strathclyde, December 2003.

33. Global Computing Initiative Website. http://www.cordis.lu/ist/fet/gc.htm, 2002.
34. Kerberos Website. http://web.mit.edu/kerberos/www/.
35. SECURE Project Official Website. http://secure.dsg.cs.tcd.ie, 2002.
36. Li Xiong and Ling Liu. Building trust in decentralized peer-to-peer electronic

communities. In Proceedings of the 5th International Conference on Electronic
Commerce Research(ICECR-5), Montreal, Canada, October 2002.

37. Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecommerce
communities. In Proceedings of the 4th ACM conference on Electronic commerce,
pages 228–229, San Diego, CA, USA, 2003. ACM Press.

38. Bin Yu and Munindar P. Singh. An evidential model of distributed reputation man-
agement. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 294–301, Bologna, Italy, 2002. ACM Press.

The SOCS Computational Logic Approach to
the Specification and Verification of

Agent Societies

Marco Alberti1, Federico Chesani2, Marco Gavanelli1, Evelina Lamma1,
Paola Mello2, and Paolo Torroni2

1 Dip. di Ingegneria - Università di Ferrara - Via Saragat, 1 - 44100 Ferrara, Italy
{malberti, mgavanelli, elamma}@ing.unife.it

2 DEIS - Università di Bologna - Viale Risorgimento, 2 - 40136 Bologna, Italy
{fchesani, pmello, ptorroni}@deis.unibo.it

Abstract. This article summarises part of the work done during the first
two years of the SOCS project, with respect to the task of modelling inter-
action amongst CL-based agents. It describes the SOCS social model: an
agent interaction specification and verification framework equipped with
a declarative and operational semantics, expressed in terms of abduction.
The operational counterpart of the proposed framework has been imple-
mented and integrated in SOCS-SI, a tool that can be used for on-the-fly
verification of agent compliance with respect to specified protocols.

1 Introduction

Computees are Computational Logic-based entities interacting in the context
of global and open computing systems [1]. They are abstractions of the entities
that populate Global Computing (GC) environments [2]. These entities can form
complex organizations, that we call Societies Of ComputeeS (SOCS, for short)
[3]. The main objective of Global Computing, rephrased in terms of SOCS, is to
provide a solid scientific foundation for the design of societies of computees, and
to lay the groundwork for achieving effective principles for building and analyzing
such systems. Between January 2002 and March 2004, the project developed a
society formal model to satisfy the high-level objectives derived directly from
the GC vision of an open and changing environment.

In this context, by “open” environment we mean, following Hewitt’s work
[4] about information systems and then Artikis et al.’s [5] about computational
societies, an environment or society where the following properties hold:

(i) the behavior of members and their interactions are unpredictable (i.e., the
evolution of the society is non-deterministic);

(ii) the internal architecture of each member is neither publicly known nor
observable (thus, members may have heterogeneous architectures);

(iii) members of the society do not necessarily share common goals, desires or
intentions (i.e., each member may conflict with others when trying to reach
its own purposes).

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 314–339, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The SOCS Computational Logic Approach 315

This definition of openness is based on externally observable features within
the society. It caters for heterogeneous and possibly non-cooperative members.
Therefore, our model of society will not constrain the ways computees join or
leave a society, it will emphasize the presence of heterogeneous computees in the
same society, and it will assume that the internal structure of computees is not
guaranteed to be observable, or their social behaviour predictable.

The SOCS social model specifies a social knowledge which interprets and
gives a social meaning to the members’ social behavior. It supports the notion
of social goal, allowing for both goal-directed and non-goal-directed societies.

In our approach, we believe that the knowledge and technologies acquired so
far in the area of Computational Logic provide a solid ground to build upon. At
the society level, the role of Computational Logic is to provide both a declar-
ative and an operational semantics to interactions. The advantages of such an
approach are to be found:

(i) in the design and specification of societies of computees, based on a for-
malism which is declarative and easily understandable by the user;

(ii) in the possibility to detect undesirable behavior, through on the fly control
of the system based on the computees’ observable behavior (communication
exchanges) and dynamic conformance check of such behaviour with the
constraints posed by the society. Interestingly, as we will see, this can be
achieved by exploiting a suitable proof procedure which is the operational
counterpart of the mentioned formalism;

(iii) in the possibility to (formally) prove properties of protocols and societies.

Therefore, in our approach, we define the (semantics of) protocols and com-
munication languages as logic-based integrity constraints over social events (e.g.,
communicative acts), called Social Integrity Constraints (icS) [6].

The ideal “correct” behaviour of a society is modelled as expectations about
events. icS define the expectations stemming from a certain history of events and
possibly a set of goals. Expectations and icS are the formalism used to define the
“social semantics” of agent communication languages and interaction protocol:
a semantics which is verifiable without having any knowledge about the agents’
internals.

The syntax of icS and of the society in general are those of a suitably ex-
tended logic program. In fact, we define the “social knowledge” by assimilating it
to abductive logic programs [7], and we define a notion of expected social events,
by expressing them as abducible predicates, while using icS to constrain the “so-
cially admissible” communication patterns of computees (i.e., those who match
the expectations).

The society infrastructure is devoted to checking the compliance of the society
members’ behaviour, with respect to its expectations.

The compliance check is based on a proof-procedure called SCIFF. SCIFF,
standing for “IFF, augmented with Constraints, for handling agent Societies”,
is an extension of the well known IFF abductive logic programming proof-
procedure, defined by Fung and Kowalski [8]. The SCIFF extends the IFF in
a number of directions: it provides both a richer syntax of abductive theories

316 M. Alberti et al.

(programs and integrity constraints), it caters for interactive event assimilation,
it supports fulfillment check and violation detection, and it embodies CLP-like
constraints [9] in the icS .

The SCIFF has been proven sound with respect to the declarative semantics
of the society model, in its ALP interpretation [10].

The SCIFF has been implemented and integrated into a Java-Prolog-CHR
based tool, named SOCS-SI (SOCS Social Infrastructure [11]). This implemen-
tation can be used to verify that agents comply to a Social Integrity Constraints-
based specification. The intended use of SOCS-SI is in combination with agent
platforms, such as PROSOCS [12], for on-the-fly verification of compliance to
protocols. In SOCS-SI, SCIFF is part of an integrated environment, provided
with interface modules to allow for such a combination, and with a graphical user
interface to observe the actual behaviour of the society members with respect to
their expected behaviour, and to detect possible deviations.

The main innovative contribution of the SOCS social model, under a Global
Computing perspective, resides in the foundational aspects of the SOCS society
model and in its direct link with its implementation, SOCS-SI.

The present work is meant to survey the activity undergone within the first
two years of the SOCS project, with respect to the society infrastructure, and
in the context of Global Computing. For a more detailed description of specific
aspects, the reader can refer to the articles cited in the bibliography.

The paper is structured as follows. In Section 2, we present the formal model
for societies, and its declarative semantics. Section 3 presents the SCIFF proof
procedure. Its implementation, and the overall tool SOCS-SI is described in
Section 4. We discuss related work in Section 5, and we conclude and outline
future work in Section 6.

2 SOCS Social Model

The SOCS model describes the knowledge about society in a declarative way.
Such knowledge is mainly composed of two parts: a static part, defining the
society organizational and “normative” elements, and a dynamic part, describing
the “socially relevant” events, that have so far occurred. In most of our examples,
events will be communicative acts, in line with most work done on software
agents. However, this is not necessarily the case. Depending on the context in
which this model is instantiated, socially relevant events could indeed be physical
actions or transactions, such as electronic payments. In addition to these two
categories of knowledge, information about social goals is also maintained.

In our model, the society is time by time aware of social events that dynam-
ically happen in the social environment (happened events). The “normative el-
ements” are encoded in what we call icS , as we will show below. Based on the
available history of events, on its specification of icS and its goals, the society can
define what the “expected social events” are and what the social events that are ex-
pected not to happen. The expected events, from a normative perspective, reflect
the “ideal” behaviour of the computees. We call these events social expectations.

The SOCS Computational Logic Approach 317

2.1 Representation of the Society Knowledge

The knowledge in a society S is given by the following components:

– a (static) Social Organization Knowledge Base, denoted SOKB;
– a (static) set of Social Integrity Constraints (ICS), denoted ICS ; and
– a set of Goals of the society, denoted by G.

In the following, the terms Atom and Literal have the usual Logic Program-
ming meaning [13].

A society may evolve, as new events happen, giving rise to sequence of society
instances, each one characterised by the previous knowledge components and, in
addition, a (dynamic) Social Environment Knowledge Base, denoted SEKB.

In particular, SEKB is composed of:

– Happened events: atoms indicated with functor H;
– Expectations: events that should (but might not) happen (atoms indicated

with functor E), and events that should not (but might indeed) happen
(atoms indicated with functor EN).

In our context, “happened” events are not all the events that have actually
happened, but only those observable from the outside of agents, and relevant
to the society. The collection of such events is the history, HAP, of a society
instance. Events are represented as ground atoms

H(Event [,Time]).

Expectations can be

E(Event [,Time]) EN(Event [,Time])

for, respectively, positive and negative expectations. E is a positive expectation
about an event (the society expects the event to happen) and EN is a negative
expectation, (the society expects the event not to happen1). Explicit negation
(¬) can be applied to expectations.

The arguments of expectation atoms can be non-ground terms. Intuitively,
if an E(X) atom is in the set of expectations generated by the society, E(X) ∈
EXP, “E” indicates a wish about an event H(Y) ∈ HAP which unifies with it:
X/Y . One such event will be enough to fulfill the expectation: thus, variables in
an E atom are always existentially quantified.

For instance, in an auction context such as the one exemplified in [14], the
following atom:

E(tell(Auctioneer, Bidders, openauction(Item, Dialogue)), Topen)

could stand for an expectation about a communicative act tell made by a com-
putee (Auctioneer), addressed to a (group of) computees (Bidders), with sub-
ject openauction(Item, Dialogue), at a time Topen.

1 EN is a shorthand for E not.

318 M. Alberti et al.

The following scope rules and quantifications are adopted:

– variables in E atoms are always existentially quantified with scope the entire
set of expectations

– the other variables, that occur only in EN atoms are universally quantified
(the scope of universally quantified variables is not important, as ∀X.p(X)∧
q(X) is logically equivalent to ∀X.p(X) ∧ ∀Y.q(Y)).

The SOKB defines structure and properties of the society, namely: goals,
roles, and common knowledge and capabilities. SOKB can change from time
to time. However, this knowledge can be seen as static since it describes the
organization of a society which changes more slowly than the way the SEKB
does. The SOKB is a logic program, consisting of clauses

Clause ::= Atom ← Body
Body ::= ExtLiteral [∧ ExtLiteral]�

ExtLiteral ::= Literal | Expectation | Constraint
Expectation ::= [¬]E(Event [, T]) | [¬]EN(Event [, T])

(1)

In a clause, the variables are quantified as follows:

– Universally, if they occur only in literals with functor EN (and possibly
constraints), with scope the body;

– Otherwise universally, with scope the entire Clause.

We call definite the predicates for which there exists a definition; i.e., a pred-
icate whose name occurs in at least the head of a clause.

The following is a sample clause:

sold(Item) ←
E(tell(Auctioneer, Bidders, openauction(Item, Dialogue)), Topen) (2)

It says that one way to fulfill the goal: “to have a certain item sold,” could
be to have some computee acting as an auctioneer and telling a set of possible
bidders that an auction is open for the item.

The goal G of the society has the same syntax as the Body of a clause in the
SOKB, and the variables are quantified accordingly.

As an example, we can consider a society with the goal of selling items. In
order to sell an item, the society might expect some computee to embody the
role of auctioneer. The goal of the society could be

← sold(nail)

and the society might have, in the SOKB, a rule such as Eq. 2. Indeed, there
could be more clauses specifying other ways of achieving the same goal, like ex-
pecting some computee to advertise a sale on some public channel, or generating
an expectation about a request of that item by some potential customer agent.
The protocol of the auction (i.e., the way the auctioneer and the bidders are
expected to interact, and in particular, to interact in a socially meaningful way)
can be then specified by means of icS .

The SOCS Computational Logic Approach 319

Social Integrity Constraints are in the form of implications. We report here,
for better readability, the characterizing part of their syntax:

icS ::= χ → φ
χ ::= (HEvent|Expectation) [∧BodyLiteral]�

BodyLiteral ::= HEvent|Expectation|Literal|Constraint
φ ::= HeadDisjunct [∨HeadDisjunct]�|⊥

HeadDisjunct ::= Expectation [∧ (Expectation|Constraint)]�

Expectation ::= [¬]E(Event [, T]) | [¬]EN(Event [, T])
HEvent ::= [¬]H(Event [, T])

(3)

Given an icS χ → φ, χ is called the body (or the condition) and φ is called
the head (or the conclusion).

The rules of scope and quantification are as follows:

1. Any variable in an icS must occur in at least an Event or in an Expectation.
2. The variables that occur both in the body and in the head are quantified

universally with scope the entire icS .
3. The variables that occur only in the head (and must occur in at least one

Expectation, by rule 1)
(a) if they occur in literals E or ¬E are quantified existentially and have as

scope the disjunct they belong to;
(b) otherwise they are quantified universally.

4. The variables that occur only in the body are quantified inside the body as
follows:
(a) if they occur only in conjunctions of ¬H, EN, ¬EN or Constraints are

quantified universally;
(b) otherwise are quantified existentially.

5. The order of the quantifiers is indeed meaningful. In our syntax, the quan-
tifier ∀ cannot be followed by ∃.

The following icS models one of the auction rules, stating that each time a
bidding event happens, the auctioneer should have sent before an openauction
event (to all bidders).

H(current time, Tc),H(tell(S, R, bid(Item, P), Anumber), Tbid), Tbid < Tc

→ E(tell(R, Bidders, openauction(Item, Anumber)), Topen), Topen ≤ Tc

2.2 ALP Interpretation of the Society

SOCS social model has been interpreted in terms of Abductive Logic Program-
ming [7], and an abductive semantics has been proposed for it [15]. Abduction
has been widely recognised as a powerful mechanism for hypothetical reasoning
in the presence of incomplete knowledge [16–19]. Incomplete knowledge is han-
dled by labeling some pieces of information as abducibles, i.e., possible hypothe-
ses which can be assumed, provided that they are consistent with the current
knowledge base. More formally, given a theory T and a formula G, the goal of

320 M. Alberti et al.

abduction is to find a (possibly minimal) set of atoms Δ which together with T
“entails” G, with respect to some notion of “entailment” that the language of T
is equipped with.

An Abductive Logic Program (ALP, for short) [7] is a triple 〈KB,A, IC〉
where KB is a logic program, (i.e., a set of clauses), A is a set of predicates that
are not defined in KB and that are called abducibles, IC is a set of formulae
called Integrity Constraints. An abductive explanation for a goal G is a setΔ ⊆ A
such that KB ∪Δ |= G and KB ∪Δ |= IC, for some notion of entailment |=.

In our social model, the idea is to exploit abduction for defining expected
behaviour of the computees inhabiting the society, and an abductive proof pro-
cedure such as the SCIFF to dynamically generate the expectations and perform
the compliance check. By “compliance check” we mean the procedure of checking
that the icS are not violated, together with the function of detecting fulfillment
and violation of expectations.

Before we give the declarative semantics of the SOCS social model, we for-
malise better the notions of instance of a society, and closure of an instance of
a society.

Definition 1. An instance SHAP of a society S is represented as an ALP, i.e.,
a triple 〈P, E , ICS〉 where:

– P is the SOKB of S together with the history of happened events HAP;
– E is the set of abducible predicates, namely E, EN, ¬E, ¬EN;
– ICS are the social integrity constraints of S.

The set HAP characterises the instance of a society, and represents the set
of observable and relevant events for the society which have already happened.
Note that we assume that such events are always ground.

A society instance is closed, when its characterizing history has been closed
under the Closed World Assumption (CWA), i.e., when no further event might
occur. In the following, we indicate a closed history by means of an overline:
HAP.

2.3 Declarative Semantics

We give semantics to a society instance by defining those sets of expectations
which, together with the society’s knowledge base and the happened events,
imply an instance of the goal—if any—and satisfy the integrity constraints.

In our definition of integrity constraint satisfaction we will rely upon a notion
of entailment in a three-valued logic, being it more general and capable of dealing
with both open and closed society instances. Therefore, in the following, the
symbol |= has to be interpreted as a notion of entailment in a three-valued
setting [20].

Throughout this section, as usual when defining declarative semantics, we
always consider the ground version of social knowledge base and integrity con-
straints, we do not consider CLP-like constraints. Moreover, we omit the time
argument in events and expectations.

The SOCS Computational Logic Approach 321

We first introduce the concept of ICS-consistent set of social expectations2.
Intuitively, given a society instance, an ICS-consistent set of social expectations
is a set of expectations about social events that are compatible with P (i.e., the
SOKB and the set HAP), and with ICS .

Definition 2 (ICS-Consistency). Given a (closed/open) society instance
SHAP, an ICS-consistent set of social expectations EXP is a set of expecta-
tions such that:

SOKB ∪HAP ∪EXP |= ICS (4)

(Notice that for closed instances HAP has to be read HAP).

In definition 2 (and in the following definitions 5, 6, 7 and 8), for open in-
stances we refer to a three-valued completion where only the history of events
has not been completed. Therefore, for open instances,

SOKB ∪HAP ∪EXP |= ICS

is a shorthand for:

Comp(SOKB ∪EXP) ∪HAP ∪ CET |= ICS

where Comp() is three-valued completion [20] and CET is Clark’s equational
theory.

For closed instances, instead,

SOKB ∪HAP ∪EXP |= ICS

is a shorthand for:

Comp(SOKB ∪EXP ∪HAP) ∪ CET |= ICS

since also the (closed) history of events needs to be completed.
ICS-consistent sets of expectations can be self-contradictory (e.g., both E(p)

and ¬E(p) may belong to a ICS-consistent set). In particular, among the ICS-
consistent sets of expectations, we are interested in those which are also consis-
tent from the viewpoint of our intended use of expectations, i.e., in relation to
the semantics of interactions. We will say that a set EXP is E-consistent if it
does not contain both a positive and a negative expectation of the same event,
and that it is ¬-consistent if it does not contain both an expectation and its
explicit negation:

Definition 3 (E-Consistency). A set of social expectations EXP is E-
consistent if and only if for each (ground) term p:

{E(p),EN(p)} �⊆ EXP

2 With abuse of terminology, we call this notion ICS-consistency though it corresponds
to the theoremhood view rather than to the consistency view defined in [8].

322 M. Alberti et al.

Definition 4 (¬-Consistency). A set of social expectations EXP is
¬-consistent if and only if for each (ground) term p:

{E(p),¬E(p)} �⊆ EXP and {EN(p),¬EN(p)} �⊆ EXP.

Given a closed (respectively, open) society instance, a set of expectations is
called closed (resp. open) admissible if and only if it satisfies Definitions 2, 3 and
4, i.e., if it is ICS-, E- and ¬-consistent.

Definition 5 (Fulfillment). Given a (closed/open) society instance SHAP, a
set of social expectations EXP is fulfilled if and only if for all (ground) terms p:

HAP ∪EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} �� ⊥ (5)

Notice that Definition 5 requires, for a closed instance of a society, that each
positive expectation in EXP has a corresponding happened event in HAP,
and each negative expectation in EXP has no corresponding happened event.
This requirement is weaker for open instances, where a set EXP is not fulfilled
only when a negative expectation occurs in the set, but the corresponding event
happened (i.e., the implication EN(p) → ¬H(p) is false).

Symmetrically, we define violation:

Definition 6 (Violation). Given a (closed/open) society instance SHAP, a set
of social expectations EXP is violated if and only if there exists a (ground) term
p such that:

HAP ∪EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} � ⊥ (6)

Finally, we give the notion of goal achievability and achievement.

Definition 7 (Goal Achievability). Given an open instance of a society,
SHAP, and a ground goal G, we say that G is achievable (and we write SHAP

≈EXPG) iff there exists an (open) admissible and fulfilled set of social expecta-
tions EXP, such that:

SOKB ∪HAP ∪EXP � G (7)

(which, as explained earlier, is a shorthand for Comp(SOKB∪EXP)∪HAP∪
CET |= G).

Definition 8 (Goal Achievement). Given a closed instance of a society,
SHAP, and a ground goal G, we say that G is achieved (and we write SHAP �EXP

G) iff there exists a (closed) admissible and fulfilled set of social expectations
EXP, such that:

SOKB ∪HAP ∪EXP � G (8)

(i.e., Comp(SOKB ∪HAP ∪EXP) ∪ CET |= G).

The SOCS Computational Logic Approach 323

3 Operational Framework

The SCIFF proof procedure is inspired to the IFF proof procedure [8]. As the
IFF, it is based on a transition system, that rewrites a formula into another,
until no more rewriting transitions can be applied (quiescence). Each of the
transitions generates one or more children from a node. As an extension of the
IFF, the SCIFF also has to deal with (i) universally quantified variables in
abducibles (ii) dynamically incoming events (iii) consistency, fulfillment and
violations (iv) CLP-like constraints.

Each node of the proof procedure is represented by the tuple

T ≡ 〈R, CS, PSIC,PEXP,HAP,FULF,VIOL〉

where

– R is a conjunction (that replaces the Resolvent in SLD resolution); initially
set to the goal G, the conjuncts can be atoms or disjunctions (of conjunctions
of atoms)

– CS is the constraint store (as in Constraint Logic Programming [9])
– PSIC is a set of implications, representing partially solved social integrity

constraints
– PEXP is the set of pending expectations
– HAP is the history of happened events
– FULF is a set of fulfilled expectations
– VIOL is a set of violated expectations

Initial Node and Success. A derivation D is a sequence of nodes T0 →
T1 → . . . → Tn−1 → Tn. Given a goal G, a set of integrity constraints ICS ,
and an initial history HAPi (that is typically empty) the first node is: T0 ≡
〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉 i.e., the conjunction R is initially the query (R0 =
{G}) and the partially solved integrity constraints PSIC is the whole set of social
integrity constraints (PSIC0 = ICS). The other nodes Tj , j > 0, are obtained by
applying one of the transitions of the proof procedure, until no further transition
can be applied (we call this last condition quiescence).

Let us now give the definition of successful derivation, both in the case of an
open society instance (where new events may be added to the history further
on) and of a closed society instance.

Definition 9. Given an initial history HAPi that evolves toward a final history
HAPf (with HAPf ⊇ HAPi), and an open society instance SHAPi , there
exists an open successful derivation for a goal G iff the proof tree with root node

〈{G}, ∅, ICS , ∅,HAPi, ∅, ∅〉

has at least one leaf node

〈∅, CS, PSIC,PEXP,HAPf ,FULF, ∅〉

324 M. Alberti et al.

where CS is consistent (i.e., there exists a ground variable assignment such that
all the constraints are satisfied).

Analogously, there exists a closed successful derivation iff the proof tree has
at least one leaf node

〈∅, CS, PSIC,PEXP,HAPf ,FULF, ∅〉

where CS is consistent, and PEXP contains only negative literals ¬E and ¬EN.

From each non-failure leaf node N , answers can be extracted in a very sim-
ilar way to the IFF proof procedure. Answers of the SCIFF proof procedure,
called expectation answers, are composed of an answer substitution and a set of
abduced expectations. First, an answer substitution σ′ is computed such that
(i) σ′ replaces all variables in N that are not universally quantified by a ground
term (ii) σ′ satisfies all the constraints in the store CSN . Notice that, by defini-
tion 9, there must be a grounding of the variables satisfying all the constraints.
In other words, we assume that the solver is (theory) complete [21], i.e., for each
set of constraints c, the solver always returns true or false, and never unknown.
Otherwise, if the solver is incomplete, σ′ may not exist. The non-existence of σ′

is discovered during the answer extraction phase. In such a case, the node N will
be marked as a failure node, and another leaf node can be selected (if it exists).

Definition 10. Given a non-failure node N , let σ′ be the answer substitution
extracted from N .

Let σ = σ′|vars(G) be the restriction of σ′ to the variables occurring in the
initial goal G. Let EXPN = (FULFN ∪ PEXPN)σ′. The pair (EXPN , σ) is
the expectation answer obtained from the node N .

3.1 Transitions

The transitions are based on those of the IFF proof procedure, augmented with
those of CLP [9], and with specific transitions accommodating the concepts of
fulfillment, dynamically growing history and consistency of the set of expecta-
tions with respect to the given definitions (Definitions 2, 3, and 4).

Due to lack of space, we do not list all the transitions, but we informally
describe the main ones, and we give the formal definition of one (Violation
EN), in order to give the taste of how the proof procedure works. The full list
of transition can be found in [10].

IFF-Like Transitions. The SCIFF proof procedure inherits the transitions of
the IFF proof procedure. The IFF proof procedure starts with a formula (that
replaces the concept of resolvent in logic programming) built as a conjunction
of the initial query and the ICs. Then it repeatedly applies one of the following
inference rules:

Unfolding replaces resolution: given a node with a definite atom, it replaces it
with one of its definitions;

The SOCS Computational Logic Approach 325

Propagation propagates icS : given a node containing A∧B → C and an atom
A′ that unifies with A, it replaces the implication with (A = A′) ∧B → C;

Splitting distributes conjunctions and disjunctions, making the final formula
in a sum-of-products form;

Case Analysis if the body of an icS contains A = A′, case analysis nondeter-
ministically tries A = A′ or A �= A′,

Factoring tries to reuse a previously made hypothesis;

Rewrite Rules for Equality use the inferences in the Clark Equality Theory;

Logical Simplifications try to simplify a formula through equivalences like
[A ∧ false] ↔ false, [true → A] ↔ A, etc.

Thanks to these inference rules, each node is always translated into a (dis-
junction of) conjunctions of atoms and implications; e.g., it can look like:

(A1 ∧A2 ∧ [B1 ∧B2 → A3] ∧ [B3 ∧B4 → A4])
∨ (Ai ∧Aj ∧Ak ∧ [By → Az] ∧ [B5 → false])

the atoms have a similar meaning to those in the resolvent in LP, while the
implications are (partially-propagated) integrity constraints.

Given a formula, it is always clear the quantification of the variables by the
following rules:

– if a variable is in the initial query, then it is free;
– else if it appears in an atom, it is existentially quantified;
– else (it appears only in implications) it is universally quantified.

CLP-Like. The SCIFF proof procedure also deals with constraints. It con-
tains the CLP transitions [9] of Constrain (moves a constraint from R to the
constraint store CS), Infer (infers new constraints given the current state of
CS) and Consistent (checks if the constraint store is satisfiable). The solver has
been extended to deal with unification and disunification of existentially and
universally quantified atoms.

Dynamically Incoming Events. We assume to have an external set of events
that happen in the society; the events in this external set are inserted in the his-
tory HAP by a transition Happening. Other transitions deal with non-happening
of events and closure of the history.

Consistency, Fulfillment and Violation. In order to rule out nodes that are
either inconsistent with respect to the declarative semantics or contain violations,
we defined transitions that nondeterministically try to unify/disunify the terms
in atoms. For instance, in order to detect a violation of EN atoms, we need to
check if one happened event unifies with it. We have the transition:

326 M. Alberti et al.

Violation EN Given a node Nk as follows:

– PEXPk = PEXP′ ∪ {EN(E1)}
– HAPk = HAP′ ∪ {H(E2)}

violation EN produces two nodes N1
k+1 and N2

k+1, where

N1
k+1 N2

k+1

VIOLk+1 = VIOLk ∪ {EN(E1)} VIOLk+1 = VIOLk

CSk+1 = CSk ∪ {E1 = E2} CSk+1 = CSk ∪ {E1 �= E2}

Example 1. Suppose that HAPk = {H(p(1, 2))} and ∃X∀Y PEXPk = {EN
(p(X, Y))}. Violation EN will produce the two following nodes:

∃X∀Y PEXPk = {EN(p(X, Y))}
HAPk = {H(p(1, 2))}

�����

�����

X = 1 ∧ Y = 2
VIOLk+1 = {EN(p(1, 2))}

X �= 1 ∨ Y �= 2

X �= 1

where the last simplification in the right branch is due to the rules of the con-
straint solver [10].

3.2 Sample Derivation

Let us consider a simple protocol: if a computee is asked for some information,
it should either provide the information or refuse, but not both.3 The protocol
definition is given by means of the following Social Integrity Constraints:

IC1: H(tell(A, B, query-ref (Info), D), T) ⇒
E(tell(B,A, inform(Info, Answer), D), T1), T1 < T + 10 ∨
E(tell(B,A, refuse(Info), D), T1), T1 < T + 10

IC2: H(tell(A, B, inform(Info, Answer), D), T) ⇒
EN(tell(A, B, refuse(Info), D), T1), T1 > T

IC3: H(tell(A, B, refuse(Info), D), T) ⇒
EN(tell(A, B, inform(Info, Answer), D), T1), T1 > T

and let us suppose that the history evolves from an empty history to a final
history HAPf composed of only two events:

H(tell(yves, david, query-ref (train info), d1), 1)
H(tell(david, yves, inform(train info, “departs(sv,rm,10:15)”), d1), 2)

The first node of the derivation tree is N0 ≡ 〈∅, ∅, ICS , ∅, ∅, ∅, ∅〉. The only ap-
plicable transition is Happening with one of the events in the external set of hap-
pened events; in this example, we will consider the events in chronological order:

3 This protocol is inspired to the FIPA query-ref interaction protocol [22].

The SOCS Computational Logic Approach 327

N1 ≡ 〈∅, ∅, PSIC, ∅, {H(tell(yves, david, query-ref (train info), d1), 1)}, ∅, ∅〉.
Now transition Propagation is applicable to IC1.

PSIC2 = { IC1, IC2, IC3,
A′ = yves, B′ = david, Info′ = train info, D′ = d1, T

′ = 1
→ E(tell(B′, A′, inform(Info′, Answer′), D′), T ′

1), T ′
1 < T ′ + 10

∨ E(tell(B′, A′, refuse(Info′), D′), T ′
1), T ′

1 < T ′ + 10
}

Each of the equalities in the body of the implication is dealt with by case
analysis. Concerning A′ = yves, case analysis generates two nodes: in the first
A′ = yves and in the second A′ �= yves is put in the constraint store. Since
A′ is universally quantified, the constraint A′ = yves succeeds when applying
transition Consistent, and A′ �= yves fails.

������

������

Case Analysis
CS3 = {A′ = yves}

Infer+Consistent
PSIC4 = {IC1, IC2, IC3, IC

′
1}

Case Analysis
CS3 = {A′ �= yves}

Consistent
fail

where

IC ′
1 =

⎧⎨⎩B′ = david, Info′ = train info, D′ = d1, T
′ = 1

→ E(tell(B′, yves, inform(Info′, Answer′), D′), T ′
1), T

′
1 < T ′ + 10

∨E(tell(B′, yves, refuse(Info′), D′), T ′
1), T

′
1 < T ′ + 10

After applying case analysis for each equality in the body, and the successive
constraint solving step, we have only one non-failure node:

N10 = 〈∅, ∅, PSIC10, ∅,HAP10, ∅, ∅〉
PSIC10 = {IC1, IC2, IC3,

true → E(tell(david, yves, inform(train info, Answer′), d1), T ′
1),

T ′
1 < 1 + 10

∨ E(tell(david, yves, refuse(train info), d1), T ′
1), T

′
1 < 1 + 10}

HAP10 = {H(tell(yves, david, query-ref(train info), d1), 1)}
We apply Logical Equivalence to the implication with true antecedent. Then,

since element R of the produced node (N11 not shown here) contains a disjunc-
tion, splitting can be applied, and its application generates two nodes. Let us
consider the first node N ′

14, having:
R′

14 = ∅
PEXP′

14 = {E(tell(david, yves, inform(train info, Answer′), d1), T ′
1)}

CS′
14 = {T ′

1 < 1 + 10}
The declarative reading of this node is:

∃Answer′,∃T ′
1. T ′

1 < 1 + 10
∧ E(tell(david, yves, inform(train info, Answer′), d1), T ′

1).

328 M. Alberti et al.

Suppose that now happening transition is applied with the second event in
the external set of happened events4.

HAP15 = {H(tell(yves, david, query-ref (train info), d1), 1),
H(tell(david, yves, inform(train info, “departs(sv,rm,10:15))”, d1), 2).}

We can now apply transition fulfillment E with the event H(tell(david, yves,
inform . . .)) in the history. The transition opens two alternative nodes, N ′

16 and
N ′′

16: either the event in the expectation unifies with the event in the history,
and becomes fulfilled, or it does not unify and remains pending.

–

CS′
16 = {Answer′ = “departs(sv,rm,10:15)” ∧ T ′

1 = 2
∧T ′

1 < 1 + 10}
FULF′

16 = {E(tell(david, yves, inform(train info, Answer′), d1), T ′
1)}

PEXP′
16 = ∅

–

CS′′
16 = {(Answer′ �= “departs(sv,rm,10:15)” ∨ T ′

1 �= 2)
∧T ′

1 < 1 + 10}
FULF′′

16 = ∅
PEXP′′

16 = {E(tell(david, yves, inform(train info, Answer′), d1), T ′
1)}

The second node can be fulfilled if the history is still open, as other events
may happen matching the pending expectation. If the history gets closed, the
pending expectation will become violated, so the second will be a violation node.
This does not mean that the proof is in a global violation. As in SLD resolution
a global failure is obtained only if all the leaves of the proof tree are failure
nodes, in the same way in SCIFF we have a global violation only if all the leaves
contain violations (i.e., in all alternative branches, VIOL �= ∅). This is not the
case in this example, since in the first node, N ′

16, the expectations are fulfilled).
Other transitions are applicable to this node; we do not continue the ex-

ample because their application is very similar to the ones already presented.
For example, transition Propagation will be applied to IC2 and to the event
H(tell(david, yves, inform . . .)) in the history, thus providing a new expectation
EN(tell(david, yves, refuse(train info), d1), T ′

1), T ′
1 > 2.

4 Implementation

In this section, we describe the implementation of SOCS-SI, the tool for compli-
ance verification of agent interaction. The tool is composed of an implementation
of the SCIFF proof-procedure specified in the previous section, interfaced to a
graphical user interface and to a component for the observation of agent inter-
action.

The SOCS-SI software application is composed of a set of modules. All the
components except one (SCIFF) are implemented in the Java language.

4 Of course, the happening transition was applicable also to the previous nodes. We
are giving here a sample derivation, but others may be possible.

The SOCS Computational Logic Approach 329

Fig. 1. Overview of the SOCS-SI architecture

The core of SOCS-SI is composed of three main modules (see Fig. 1), namely:

– Event Recorder : fetches events from different sources and stores them inside
the History Manager.

– History Manager : receives events from the Event Recorder and composes
them into an “event history”.

– Social Compliance Verifier : fetches events from the History Manager and
passes them to the proof-procedure in order to check the compliance of the
history to the specification.
Computees communicate by exchanging messages, which are then translated

into H events. The Event Recorder fetches events and records them into the
History Manager, where they become available to the proof-procedure (see Sect.
4.1). As soon as the proof-procedure is ready to process a new event, it fetches
one from the History Manager. The event is processed and the results of the
computation are returned to the GUI. The proof-procedure then continues its
computation by fetching another event if there is any available, otherwise it
suspends, waiting for new events.

A fourth module, named Init&Control Module provides for initialization of all
the components in the proper order. It receives as initial input a set of protocols
defined by the user, which will be used by the proof-procedure in order to check
the compliance of agents to the specification.

4.1 Implementation of SCIFF

The SCIFF proof procedure has been implemented in SICStus Prolog [23], ex-
ploiting its constraint libraries and, in particular, the Constraint Handling Rules
(CHR) library [24].

The data structures representing the proof tree nodes are represented as
follows:

330 M. Alberti et al.

– R is represented by the Prolog resolvent;
– CS is the CLP (CLPFD, CLPB) constraint store;
– PSIC, EXP, HAP, FULF, VIOL are represented as CHR constraints.

Attributes [25] are used to represent the quantification (existential or uni-
versal) of variables in expectations; an ad-hoc CHR constraint (reif unify/3)
implements reified unification (i.e., both the constraints = and �=) between vari-
ables and terms.

Thanks to the representation of most data structures as CHR constraints, the
transitions (such as propagation, happening, fulfillment/violation) that modify
those data structures have been implemented by exploiting the CHR computa-
tional model.

For instance, the following rule immplements the check for E-consistence:

e_consistency @
e(EEvent,ETime),
en(ENEvent,ENTime)
==>
reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0).

This is a propagation rule, i.e., a rule that adds a constraint to the CHR
store whenever a combination of constraints is present in the store. The name
of the rule is e_consistency. e(EEvent,ETime) and en(ENEvent,ENTime) are
the two CHR constraints representing the expectations E(EEvent ,ETime) and
EN(ENEvent ,ENTime), respectively. Whenever these two constraints are in the
CHR store, the dis-unification constraint

reif_unify(p(EEvent,ETime),p(ENEvent,ENTime),0)

is added to the store to impose that the arguments of the positive and the
negative expectations do not unify, as required by E-consistency (see Def. 3).

The CLP transitions, instead, are delegated to the CLP solvers available in
SICStus Prolog: we have used CLPFD for finite domains and CLPB for binary
domains variables, but in principle it would be possible to use any CLP library
based on SICStus.

The SCIFF proof tree is searched with a depth-first strategy, so to exploit
the Prolog stack for backtracking. The success of the proof procedure (see Def.
8) is mapped onto a successful Prolog derivation.

4.2 The Graphical User Interface

The Graphical User Interface is implemented by using the Swing graphic library,
and implements the Model-View-Control programming pattern. The main win-
dow is composed of three areas (or sub-windows), and of a button bar that
contains the controls (see Fig. 2).

The bottom area contains the list of all the messages received by SOCS-SI.
The left pane contains the list of agents known by the society, i.e., agents that
have performed at least one communicative action. The central pane contains the

The SOCS Computational Logic Approach 331

Fig. 2. A screenshot of the application

results of the computation, returned by the proof-procedure. These results are
expressed in terms of society expectations about the future behavior of agents,
and also in terms of fulfilled expectations and violations of social rules. By select-
ing an agent from the left pane, it is possible to restrict the information shown
on the larger pane to be only that relevant to that particular agent. Among other
features, it is possible to execute step-by-step the application, so that it elabo-
rates one message at a time and then waits for a user acknowledge (similarly to
the debug interface of modern compilers).

5 Related Work

The main result of the first two years of the SOCS project, with respect to
societies od computees, is the definition of a social framework. In doing this, we
have provided (i) a declarative representation of the social knowledge, (ii) a logic
formalism based on social expectations and ICS , for specifying social rules and
easily verifiable protocols, and for defining the semantics of communicative acts
in an open system scenario, (iii) a proof-procedure proven correct with respect
to the declarative representation of the social knowledge, and (iv) a prototypical
implementation of the social framework which can be used to test the framework
with a number of scenarios, protocols, and communication languages.

Our work relates to several aspects of Multi-Agent Systems research, in terms
of social and interaction models, operational frameworks, and implemented sys-
tems, and to work done in Computational Logics, specifically in extensions of
logic programming. Space limitations prevent us from thoroughly discussing here

332 M. Alberti et al.

the SOCS social framework in relationship with other conspicuous work done on
all these areas. We will only give an overview of some related work, and give a
reference to the relevant project deliverables for further discussions.

ICS represent in a way social norms. Several researchers have studied the con-
cepts of norms, commitments and social relations in the context of Multi-Agent
Systems [26]. Furthermore, a lot of research has been devoted in proposing archi-
tectures for developing agents with social awareness (see, for instance [27]). Our
approach can be conceived as complementary to these efforts, since instead of
proposing a specific architecture for designing computees, our work is mainly fo-
cused on the definition of a society infrastructure based on Computational Logic
for regulating and improving robustness of interaction in an open environment,
where the internal architecture of the computees might be unknown.

Our work is very related, as far as objectives and methodology, to the work on
computational societies presented and developed in the context of the ALFEBI-
ITE project [28]. We have in fact the same understanding of openness, as we
pointed out in the introduction. In turn, our work is especially oriented to com-
putational aspects, and it was developed with the purpose of providing a com-
putational framework that can be directly used for automatic verification of
properties such as compliance.

Most formal approaches to protocol modelling specify protocols as legal se-
quences of actions [29, pp.19–22]. In this way, protocols can be over-constrained,
and this affects autonomy, heterogeneity, and ability to exploit opportunities
and exceptions [30]. Moreover, the mentalistic approach to protocol definition
has been much criticized mainly because its assumptions regarding agents’ in-
ternals are not realistic in open societies of heterogeneous agents [31]. Therefore
we advocated a social approach, where the semantics of interactions is defined in
terms of the effects of the computees interactions on the society. Following this
approach, even if the computees mental state cannot be accessed, it is possible
to verify whether communicating computees in a society comply to some social
laws and norms which regulate the interactions. Another expressive advantage
of our framework is that it can express with the same formalism both protocols
and social semantics of communicative acts.

In our social approach we drew inspiration from work done by Yolum and
Singh [30] where a social semantics of agent interaction protocols is exemplified
by using a commitment-based approach, and by Fornara and Colombetti [32–
34], especially as it concerns the semantics of communication languages [29, pp.
37–41]. In particular, the latter approach is similar to ours in that it specifies
the semantics of actions in terms of their social effects, and presupposes a social
framework (which is called institution in [33]) for assigning agents with roles,
verifying their social behavior and, possibly, recovering from violation conditions.
There are, however, some significant differences with [33], mainly originating
from the different paradigm we have chosen to express semantics (logic-based
instead of object-oriented), as it is shown in [29, p. 71].

Yolum and Singh also propose an interesting way of linking together com-
municative acts and protocol specifications using the idea of social semantics in

The SOCS Computational Logic Approach 333

[30], where an agent can find a communication path leaving no pending com-
mitments by exploiting its reasoning/planning capabilities. Our approach rather
aims at ensuring protocol compliance regardless of computees’ reasoning capa-
bilities. In fact, ICS are designed to explicit constraints between communicative
acts. However, equipping the communication model of single computees with suf-
ficient knowledge to reason about social expectations is certainly an interesting
option. This topic is discussed in D4 [35].

Finally, there exist other approaches based on Deontic Logic to formally defin-
ing norms and dealing with their possible violations. An example of it is work by
Dignumet al. [36], as discussed in [29, pp. 72].Deontic operators have been used not
only at the social level, but also at the agent level. Notably, in IMPACT [37, 38],
agent programs may be used to specify what an agent is obliged to do, what an
agent may do, and what an agent cannot do on the basis of deontic operators of
Permission, Obligation and Prohibition (whose semantics does not rely on a Deon-
tic Logic semantics). In this respect, IMPACT and our work have similarities even
if their purpose and expressivity are different. The main difference is that the goal
of agent programs in IMPACT is to express and determine by its application the
behavior of a single agent, whereas our goal is to express rules of interaction, that
instead cannot really determine and constrain the behavior of the single computees
participating to the interaction protocols, since computees are autonomous.

Our work is not only directly related to social aspects of MAS, but also to
extensions of Logic Programming for MAS. In particular, the syntax of icS is
strictly related to that of integrity constraints in the IFF proof-procedure [8]. In
[29, pp. 92–94] work on ICS is discussed with that done by Fung and Kowalski,
with a focus on some syntactic aspects of the integrity constraints handled by
the IFF proof-procedure. Briefly, the SCIFF can be considered as an extension
of the IFF proof procedure that also:

– abduces atoms with variables universally quantified;
– deals with CLP constraints, also imposed as quantifier restrictions on uni-

versally quantified variables;
– is more dynamic, in fact new events may arrive, and the proof procedure

dynamically takes them into consideration in the knowledge base;
– has the new concepts, related to on-line verification, of fulfillment and vio-

lation.

The IFF is not the only abductive logic programming proof-procedure in
literature. Various abductive proof procedures have been proposed in the past.
In [39, p. 173] other procedures are discussed in relationship with our choice
based on the IFF.

Other authors also proposed using abduction for verification. Noteworthily,
Russo et al. [40] use an abductive proof procedure for analyzing event-based re-
quirements specifications. In their approach, the system has a declarative spec-
ification given through the Event Calculus [41] axioms, and the goal is proving
that some invariant I is true in all cases. This method uses abduction for ana-
lyzing the correctness of specifications, while our system is more focussed on the
on-line check of compliance of a set of agents.

334 M. Alberti et al.

We will conclude this section by quickly mentioning two other implementa-
tions of social frameworks. The cited above ALFEBIITE project delivers a tool
(Society Visualiser) to demonstrate animations of protocol runs in such systems
[5]. The Society Visualiser’s main purpose is to explicitly represent the institu-
tional power of the members and the concept of valid action. As we stressed
earlier on, our work is not based on any deontic infrastructure. For this reason,
the SOCS social framework could be used in a different, possibly broader spec-
trum of application domains, ranging from intelligent agents to reactive systems.

ISLANDER [42] is a tool for the specification and verification of interaction in
complex social infrastructures, such as electronic institutions. ISLANDER allows
to analyse situations, called scenes, and visualise liveness or safeness properties
in some specific settings. The kind of verification involved is static and is used
to help designing institutions. Although our framework could also be used at
design time, its main intended use is for on-the-fly verification of heterogeneous
and open systems.

6 Conclusion and Future Work

In this work, we reported on a Computational Logic-based framework for mod-
elling societies of computees and their interactions. We presented both published
and original work done in the first two years of the SOCS project about mod-
elling interactions among agents/computees. In [29, pp. 9–10] we give a list of
pointers to publications where some of the results presented here can be seen in
more detail.

One of the main objectives of SOCS was to deliver a formal logic-based frame-
work to characterize the interactions between computees in a rule-based manner,
either by relying on protocols shared and agreed upon by all computees in a given
society, or by interaction patterns that are specific to individual computees and
possibly different for different computees.

We defined a model which lent itself easily to a computational realisation,
and which is precise and amenable to formal verification of properties pertaining
to the interactions of the computees belonging to a particular societies.

The social model of interaction among computees that we propose follows
a Computational Logic-based approach. In this model, Logic Programming,
suitably extended with the concept of ICS and expectations (interpreted as
abducibles), acts as a uniform language for protocols, interaction policies and
patterns.

A degree of openness, understood as the freedom of its members to join or
leave the society, is given by the model presented in Section 2, which caters
for new members joining a society and existing members leaving it [29, p. 27].
Another degree of openness, understood as the possibility to have a society of
heterogeneous computees, is achieved by the fact that the model of the society,
including the handling of expectations, the protocol conformance checking and
the generation of violations, are only based on the socially observable behaviour
of computees: no assumption is made on the internals of computees, but their

The SOCS Computational Logic Approach 335

social behaviour is constrained by the semantics of social actions and protocols.
Non-conforming behaviour of computees is still possible, but it will be detected
by the society infrastructure and it will have social consequences.

Violation handling and recovery is a matter of current and future work. The
SOCS model of society caters for reasoning under incomplete information, in
the sense that events that did not happen or that have not been “detected”
are treated as unattended expectations, and it is possible to reason over both
expectations and happened events.

The formalism for expressing society rules and protocols, together with the
semantics of the individual communication utterances, is based on Abductive
Logic Programming and constraints over abducible predicates, and its declara-
tive semantics has been given in terms of logical entailment. The SCIFF provides
the operational support for the underlying infrastructure.

Time is explicit in the model. The “reasoning” at a social level is made over
time, and it takes into account issues such as dealing with deadlines, that are
important also from a practical viewpoint [29, pp. 35–36]. In this way, we propose
a social framework which is suitable for modelling a dynamic setting and able
to handle changes in a dynamic environment.

In [43] we present an evaluation of the society model in the context of the
Global Computing programme. We believe that one of the strong points of our
approach are to be found in its formality, not only at a syntactic level (definition
of what is the format of the society knowledge, icS , protocols, CCL format
and constraints), but also, and more interestingly, at the semantic level, which
allows us to describe what are the desirable evolutions of a society and link these
formally to the social structure and social behaviour of the computees.

Most importantly, the formality of the framework is indeed backed-up by an
existing and well-defined operational counterpart, the SCIFF, a proof-procedure
which has been proven correct with respect to the model, implemented, and
integrated in the implementation of a tool, SOCS-SI, which can be used to run
some tests.

We have interpreted the protocol conformance checks and the normative con-
trol performed by the society as abductive tasks, and defined an extension of
the IFF abductive proof procedure to deal with this task. The extension is non-
trivial, and deals with complex forms of variables quantification in abductive
logic programs, as well as constraint predicates.

Finally, we believe that a further contribution of the work presented in this
document is that the computational models devised within SOCS for the com-
putee and for their societies are can be easily integrated with each other, since
they are based on a similar formalism and on the same technology.

Future work will go in the direction of testing the system in different scenar-
ios and studying properties of the model and of specific instances of societies.
Among the scenarios that we are considering to evaluate the expressiveness of
the designed interaction models are: dialogue-based interaction, with a special fo-
cus on resource reallocation, a combinatorial auction and an electronic payment
network protocol.

336 M. Alberti et al.

Acknowledgements

This work is partially funded by the Information Society Technologies pro-
gramme of the European Commission under the IST-2001-32530 SOCS Project
[3], and by the MIUR COFIN 2003 projects Sviluppo e verifica di sistemi multi-
agente basati sulla logica [44], and La Gestione e la negoziazione automatica dei
diritti sulle opere dell’ingegno digitali: aspetti giuridici e informatici.

References

1. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri,
F., Stathis, K., Terreni, G., Toni, F.: The KGP model of agency: Computational
model and prototype implementation. In this volume.

2. Global Computing, Future and Emerging Technologies: Co-operation of Au-
tonomous and Mobile Entities in Dynamic Environments. Home Page:
http://www.cordis.lu/ist/fetgc.htm.

3. Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees.
Home Page: http://lia.deis.unibo.it/research/socs/.

4. Hewitt, C.: Open information systems semantics for distributed artificial intelli-
gence. Artificial Intelligence 47 (1991) 79–106

5. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In Castelfranchi, C., Lewis Johnson, W., eds.: Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2002),
Part III, Bologna, Italy, ACM Press (2002) 1053–1061

6. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Modeling interac-
tions using Social Integrity Constraints: A resource sharing case study. In Leite,
J.A., Omicini, A., Sterling, L., Torroni, P., eds.: Declarative Agent Languages and
Technologies. Lecture Notes in Artificial Intelligence 2990. Springer-Verlag (2004)
243–262

7. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In Gabbay, D.M., Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 5., Oxford University Press
(1998) 235–324

8. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

9. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503–582

10. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Speci-
fication and verification of interaction protocols: a computational logic
approach based on abduction. Technical Report CS-2003-03, Dipar-
timento di Ingegneria di Ferrara, Ferrara, Italy (2003) Available at
http://www.ing.unife.it/aree_ricerca/informazione/cs/technical_reports.

11. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based tool. In Trappl, R., ed.:
Proceedings of the 17th European Meeting on Cybernetics and Systems Research,
Vol. II, Symposium “From Agent Theory to Agent Implementation” (AT2AI-4),
Vienna, Austria, Austrian Society for Cybernetic Studies (2004) 570–575

The SOCS Computational Logic Approach 337

12. Stathis, K., Kakas, A.C., Lu, W., Demetriou, N., Endriss, U., Bracciali, A.:
PROSOCS: a platform for programming software agents in computational logic.
In Trappl, R., ed.: Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Vol. II, Symposium “From Agent Theory to Agent Implementa-
tion” (AT2AI-4), Vienna, Austria, Austrian Society for Cybernetic Studies (2004)
523–528

13. Lloyd, J.W.: Foundations of Logic Programming. 2nd extended edn. Springer-
Verlag (1987)

14. Torroni, P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P.: A
logic based approach to interaction design in open multi-agent systems. In: Pro-
ceedings of the 13th IEEE international Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises (WETICE-2004), 2nd international
workshop “Theory and Practice of Open Computational Systems (TAPOCS)”,
Modena, Italy, IEEE Press (2004) to appear.

15. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive
Interpretation for Open Societies. In Cappelli, A., Turini, F., eds.: AI*IA 2003:
Advances in Artificial Intelligence, Proceedings of the 8th Congress of the Italian
Association for Artificial Intelligence, Pisa. Lecture Notes in Artificial Intelligence
2829. Springer-Verlag (2003) 287–299

16. Cox, P.T., Pietrzykowski, T.: Causes for events: Their computation and applica-
tions. In: Proceedings CADE-86. (1986) 608–621

17. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In Levi,
G., Martelli, M., eds.: Proceedings of the 6th International Conference on Logic
Programming, MIT Press (1989) 234–255

18. Kakas, A.C., Mancarella, P.: On the relation between Truth Maintenance and
Abduction. In Fukumura, T., ed.: Proceedings of the 1st Pacific Rim International
Conference on Artificial Intelligence, PRICAI-90, Nagoya, Japan, Ohmsha Ltd.
(1990) 438–443

19. Poole, D.L.: A logical framework for default reasoning. Artificial Intelligence 36
(1988) 27–47

20. Kunen, K.: Negation in logic programming. In: Journal of Logic Programming.
Volume 4. (1987) 289–308

21. Jaffar, J., Maher, M., Marriott, K., Stuckey, P.: The semantics of constraint logic
programs. Journal of Logic Programming 37(1-3) (1998) 1–46

22. FIPA Query Interaction Protocol (2001) Published on August 10th, 2001. Available
for download from the FIPA web site, http://www.fipa.org.

23. SICStus prolog user manual, release 3.11.0 (2003) Available for download from the
SICS web site, http://www.sics.se/isl/sicstus/.

24. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37 (1998) 95–138

25. Holzbaur, C.: Specification of constraint based inference mechanism through ex-
tended unification. Dissertation, Dept. of Medical Cybernetics & AI, University of
Vienna (1990)

26. Conte, R., Falcone, R., Sartor, G.: Special issue on agents and norms. Artificial
Intelligence and Law 1 (1999)

27. Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative normative agents:
Principles and architecture. In Jennings, N.R., Lespérance, Y., eds.: Intelligent
Agents VI. Lecture Notes in Computer Science 1757. Springer-Verlag (1999) 364–
378

338 M. Alberti et al.

28. ALFEBIITE: A Logical Framework for Ethical Behaviour between
Infohabitants in the Information Trading Economy of the univer-
sal information ecosystem. IST-1999-10298 (1999) Home Page:
http://www.iis.ee.ic.ac.uk/~alfebiite/ab-home.htm.

29. Mello, P., Torroni, P., Gavanelli, M., Alberti, M., Ciampolini, A., Milano, M., Roli,
A., Lamma, E., Riguzzi, F., Maudet, N.: A logic-based approach to model interac-
tion amongst computees. Technical report, SOCS Consortium (2003) Deliverable
D5. Available on request.

30. Yolum, P., Singh, M.: Flexible protocol specification and execution: applying
event calculus planning using commitments. In Castelfranchi, C., Lewis Johnson,
W., eds.: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2002), Part II, Bologna, Italy, ACM
Press (2002) 527–534

31. Singh, M.: Agent communication language: rethinking the principles. IEEE Com-
puter (1998) 40–47

32. Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language. In Castelfranchi, C., Lewis Johnson, W., eds.:
Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2002), Part II, Bologna, Italy, ACM Press (2002)
535–542

33. Colombetti, M., Fornara, N., Verdicchio, M.: The role of institutions in multiagent
systems. In: Proceedings of the Workshop on Knowledge based and reasoning
agents, VIII Convegno AI*IA 2002, Siena, Italy. (2002)

34. Colombetti, M., Fornara, N., Verdicchio, M.: A social approach to communica-
tion in multiagent systems. In Leite, J.A., Omicini, A., Sterling, L., Torroni, P.,
eds.: Declarative Agent Languages and Technologies. Lecture Notes in Artificial
Intelligence 2990. Springer-Verlag (2004) 193–222

35. Kakas, A., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: A logic-based approach
to model computees. Technical report, SOCS Consortium (2003) Deliverable D4.
Available on request.

36. Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal specification of inter-
action in agent societies. In: Proceedings of the Second Goddard Workshop on
Formal Approaches to Agent-Based Systems (FAABS), Maryland. (2002)

37. Arisha, K.A., Ozcan, F., Ross, R., Subrahmanian, V.S., Eiter, T., Kraus, S.: IM-
PACT: a Platform for Collaborating Agents. IEEE Intelligent Systems 14 (1999)
64–72

38. Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous active agents, I: Semantics.
Artificial Intelligence 108 (1999) 179–255

39. Kakas, A.C., Lamma, E., Mancarella, P., Mello, P., Stathis, K., Toni, F.: Compu-
tational model for computees and societies of computees. Technical report, SOCS
Consortium (2003) Deliverable D8. Available on request.

40. Russo, A., Miller, R., Nuseibeh, B., Kramer, J.: An abductive approach for
analysing event-based requirements specifications. In Stuckey, P., ed.: Logic Pro-
gramming, 18th International Conference, ICLP 2002. Lecture Notes in Computer
Science 2401. Springer-Verlag (2002) 22–37

41. Kowalski, R.A., Sergot, M.: A logic-based calculus of events. New Generation
Computing 4 (1986) 67–95

42. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions
editor. In Castelfranchi, C., Lewis Johnson, W., eds.: Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2002), Part III, Bologna, Italy, ACM Press (2002) 1045–1052

The SOCS Computational Logic Approach 339

43. Bracciali, A., Kakas, A.C., Lamma, E., Mello, P., Stathis, K., Toni, F., Torroni, P.:
D11: Evaluation and self assessment. Technical report, SOCS Consortium (2003)
Deliverable D11. Available on request.

44. MASSiVE: sviluppo e verifica di sistemi multi-agente basati sulla logica. Home
Page: http://www.di.unito.it/massive/.

The KGP Model of Agency for Global
Computing: Computational Model and

Prototype Implementation

A. Bracciali1, N. Demetriou2, U. Endriss3, A. Kakas2, W. Lu4, P. Mancarella1,
F. Sadri3, K. Stathis4,1, G. Terreni1, and F. Toni3,1

1 Dip. di Informatica, Università di Pisa
{braccia, paolo, terreni}@di.unipi.it

2 Dept of Computer Science, Cyprus University
{demetriou, antonis}@cs.ucy.ac.cy

3 Dept of Computing, Imperial College London
{ue, fs, ft}@doc.ic.ac.uk

4 School of Informatics, City University London
{lue, kostas}@soi.city.ac.uk

Abstract. We present the computational counterpart of the KGP (Kno-
wledge, Goals, Plan) declarative model of agency for Global Computing.
In this context, a computational entity is seen as an agent developed us-
ing Computational Logic tools and techniques. We model a KGP agent
by relying upon a collection of capabilities, which are then used to define
a collection of transitions, to be used within logically specified, context
sensitive control theories, which we call cycle theories. In close relation-
ship to the declarative model, the computational model mirrors the log-
ical architecture by specifying appropriate computational counterparts
for the capabilities and using these to give the computational models of
the transitions. These computational models and the one specified for the
cycle theories are all based on, and are significant extensions of, existing
proof procedures for abductive logic programming and logic program-
ming with priorities. We also discuss a prototype implementation of the
overall computational model for KGP.

1 Introduction

Global Computing (GC) and its applications rely upon computing environments
that are composed of autonomous computational entities whose activity is not
centrally controlled but is decentralised instead. Decentralisation results either
because global control is impossible or at times impractical, or because the en-
tities are created or controlled by different owners. The computational entities
may be mobile, due to the movement of the physical platforms or by movement
of the entities from one platform to another. In other words, the environment
in which the entities are situated is open and evolves over time. For instance,
in a typical GC application it might be required to allow for the introduction

C. Priami and P. Quaglia (Eds.): GC 2004, LNCS 3267, pp. 340–367, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The KGP Model of Agency for Global Computing 341

and deletion of computational entities. The internal structure and behaviour of
these entities may also be heterogeneous and may vary over time.

Programming the behaviour of a computational entity that is situated in a
GC environment is a non-trivial task. One of the problems is that such an en-
tity should be in a position to operate with incomplete information about the
environment. Incompleteness might arise from the entities having newly joined
the environment of an application and having only a partial view over the status
of that application. Incompleteness might also arise from the autonomy of the
entities and their unwillingness to disclose information about themselves. More-
over, incompleteness might sometimes be caused by the fact that information
in a GC environment becomes rapidly out of date. Thus, a GC entitity needs
to be able to discover relevant information or other entities in the dynamically
evolving environment.

If the ultimate goal of GC research is to provide a solid scientific foundation
for the design of GC systems, we will need to lay the groundwork for achieving
effective principles for building and analysing such systems. In trying to achieve
this goal, within the GC project SOCS we interpret the GC vision as follows.
Entities in GC systems are defined via Computational Logic (CL), as understood
in [26, 29, 27], which is used to define their internal organisation, reasoning and
their mutual interactions. We call the entities computees, standing for agents
in CL1. One important feature of computees is that they are able to reason by
using CL tools and techniques. We call the systems composed of such entities
societies (see [7]) as they are characterised by “social rules” for computees to
interact and operate in the presence of each other.

In order to interact freely, computees can use high-level communication, as
understood in multi-agent systems. Computees may be heterogeneous as far as
behaviour is concerned, provided by CL-based cycle theories allowing a highly
modular and flexible specification of control. Cycle theories allow to render com-
putees adaptable to dynamically changing environments and allow to charac-
terise, via different cycle theories, heterogeneously behaved computees.

Computees also need to adapt their internal state as the environments in
which they are situated evolve. A number of CL techniques have been developed
for addressing tasks such as temporal reasoning in a changing environment,
hypothetical reasoning for dealing with incomplete information, hypothetical
reasoning for planning, hypothetical reasoning to achieve communication, argu-
mentation for decision-making, inductive logic programming for learning. How-
ever, in order to cope with the GC challenges, CL techniques in isolation are
inadequate, as none serves all dimensions in the operation of computees. Our
model for computees integrates (extensions of) a number of existing CL tech-
niques, in order to achieve the enhanced performance which is required by the
GC vision.

We call our model KGP , since computees’ internal state consists of a knowl-
edge base (K), from which they reason, goals (G) that they need to achieve,

1 In this paper, we will use the terms computees and agents interchangeably.

342 A. Bracciali et al.

and plans (P) for their goals, consisting of actions that may be physical, sens-
ing or communicative. Computees pursue their goals while being alert to the
environment and adapt their goals and plan to any changes that they perceive.

The paper is organised as follows. In section 2 we summarise the main fea-
tures of the KGP model and give some of the technical details underlying it. In
sections 3–5 we provide the computational models of some components of the
KGP model and state their soundness wrt their formal specification. The overall
computational model is built bottom-up, mirroring the hierarchical and modular
structure of the abstract model. Section 3 also gives some background on the CL
techniques that we have employed to define the KGP model, namely Abductive
Logic Programming (ALP) and Logic Programming with Priorities (LPP), as
well as the proof procedures (for ALP and for LPP) from which we have built
the computational counterpart of the KGP model, in a bottom-up fashion. In
section 6 we describe the prototype implementation of KGP agents, namely the
SOCS-iC (for SOCS individual Computee) component of the PROSOCS plat-
form [36]. Section 7 concludes.

2 KGP Model: Recap

Here we briefly summarise the KGP model for computees, see [18, 17] for any
additional details. This model relies upon

– an internal (or mental) state,
– a set of reasoning capabilities, supporting planning, temporal reasoning,

identification of preconditions of actions, reactivity and goal decision,
– a sensing capability,
– a set of transition rules, defining how the state of the computee changes, and

defined in terms of the above capabilities,
– a set of selection functions, to provide appropriate inputs to the transitions,
– a cycle theory, for deciding which transitions should be applied when, and

defined using the selection functions.

The model is defined in a modular and hierarchical fashion.

Internal State. This is a tuple 〈KB, Goals, P lan, TCS〉, where:

– KB is the knowledge base of the computee, and describes what the computee
knows (or believes) of itself and of the environment. KB consists of modules
supporting different reasoning capabilities:
• KBplan, for Planning,
• KBpre, for the Identification of Preconditions of actions,
• KBTR, for Temporal Reasoning,
• KBGD, for Goal Decision,
• KBreact, for Reactivity, and
• KB0, for holding the (dynamic) knowledge of the computee about the

external world in which it is situated (including past communications).

The KGP Model of Agency for Global Computing 343

Syntactically, KBplan,KBreact and KBTR are abductive logic programs with
constraint predicates (see section 3.1), KBpre is a logic program (see sec-
tion 3.1), KBGD is a logic program with priorities (see section 3.2), and
KB0 is a set of logic programming facts, and it is (implicitly) included in all
the other modules.

– Goals is the set of properties that the computee wants to achieve, each one
explicitly time-stamped by a time variable. Goals may also be equipped with
a temporal constraint (belonging to TCS) bounding the time variable and
defining when the goals are expected to hold. Goals may be mental or sensing.
Both can be observed to hold (or not to hold) via the Sensing capability. In
addition, mental goals can be brought about actively by the computee by its
Planning capability and its actions.

– Plan is a set of actions scheduled in order to satisfy goals. Each is explic-
itly time-stamped by a time variable and possibly equipped with a temporal
constraint, similarly to Goals, but defining when the action should be ex-
ecuted. Actions are partially ordered, via their temporal constraints. Each
action is also equipped with the preconditions for its successful execution,
determined by the Identification of Preconditions capability. Actions may be
physical, communicative, or sensing. We assume that actions are atomic and
do not have a duration. Actions can be seen as special kinds of goals which
are directly executable.

– TCS is a set of constraint atoms (referred to as temporal constraints) in
some given underlying constraint language with respect to some structure
/ equipped with a notion of constraint satisfaction |=�(see section 3.1). We
assume that the constraint predicates include <,≤, >,≤, =, �=. Temporal
constraints refer to time constants, namely numbers, and time variables,
namely distinguished variables which can be instantiated to time constants.
These constraints bind the time of goals in Goals and actions in Plan. For
example, they may specify a time window over which the time of an action
can be instantiated, at execution time.

Goals and actions are uniquely identified by their associated time variable,
which is implicitly existentially quantified within the overall state.

To aid revision and partial planning, Goals and Plan form a tree2. The tree
is augmented by calls to the Goal Decision, Planning and Reactivity capabil-
ities. The tree is given implicitly by associating with each goal and action its
parent. Top-level goals and actions are children of the root of the tree, which,
by convention, is the special symbol ⊥. Actions always occur as leaves.

2 In the full model [5], we actually have two trees, the first containing non-reactive
goals and actions, the second containing reactive goals and actions. All the top-
level non-reactive goals are either assigned to the computee by its designer at birth,
or they are determined by the Goal Decision capability. All the top-level reactive
goals and actions are determined by the Reactivity capability. Here for simplicity we
overlook the distinction amongst the two trees.

344 A. Bracciali et al.

Reasoning Capabilities. These are:

– Planning, which generates partial plans for sets of goals. It provides (tem-
porally constrained) sub-goals and actions designed for achieving the input
goals.

– Reactivity, which reacts to perceived changes in the environment, by replac-
ing (some) goals in Goals and actions in Plan with (possibly temporally
constrained) goals and actions.

– Goal Decision, which revises the top-most level goals of the computee, adapt-
ing the computee’s state to changes in its own preferences and in the envi-
ronment. Differently form Reactivity, it only modifies the top-level goals, it
does not add actions to Plan and it does not depend upon the current Goals
and Plan.

– Identification of Preconditions for action execution.
– Temporal Reasoning, which reasons about the evolving environment, and

makes predictions about properties (fluents) holding in the environment,
based on the partial information the computee acquires.

Sensing Capability. In addition to the reasoning capabilities above, the com-
putee is equipped with a Sensing capability which links it to its environment, by
allowing to observe that properties hold or do not hold, and that other agents
have executed actions in the past.

Transitions. The state of a computee evolves by applying transition rules, which
employ capabilities and the constraint satisfaction |=�. The transitions are:

– Goal Introduction (GI), changing the top-level Goals, and using Goal Deci-
sion.

– Plan Introduction (PI), changing Goals and Plan, and using Planning and
Introduction of Preconditions.

– Reactivity (RE), changing Goals and Plan, and using the Reactivity capa-
bility.

– Sensing Introduction (SI), changing Plan by introducing new sensing actions
for checking the preconditions of actions already in Plan, and using Sensing.

– Passive Observation Introduction (POI), changing KB0 by introducing un-
solicited information coming from the environment, and using Sensing.

– Active Observation Introduction (AOI), changing KB0 by introducing the
outcome of (actively sought) sensing actions, and using Sensing.

– Action Execution (AE), executing all types of actions, and thus changing
KB0.

– Goal Revision (GR), revising Goals, and using Temporal Reasoning and
Constraint Satisfaction.

– Plan Revision (PR), revising Plan, and using Constraint Satisfaction.

Cycle. The behaviour of a computee is given by the application of transitions in
sequences, repeatedly changing the state of the computee. These sequences are
not determined by fixed cycles of behaviour, as in conventional agent architec-
tures, but rather by reasoning with cycle theories. These are logic programs with

The KGP Model of Agency for Global Computing 345

priorities (see section 3.2), defining preference policies over the order of applica-
tion of transitions, which may depend on the environment and the internal state
of a computee. This provision of a declarative control for computees in the form
of cycle theories is a highly novel feature of the model, which could, in principle,
be imported into other agent systems.

In the remainder of this section, we give some details on the state of com-
putees. Details on the other components of the model (capabilities, transitions,
selection functions and cycle) will be illustrated when describing their computa-
tional models, in sections 3–5. Here, note that alternative choices for reasoning
capabilities and transitions would have been possible, and the model could be
extended to incorporate further such capabilities and further transitions.

Vocabularies. We assume (possibly infinite) vocabularies of time constants (e.g.,
the set of all natural numbers), time variables (indicated with t, t′, s, . . .), fluents
(indicated with f, f ′, . . .), action operators (indicated with a, a′, . . .), and names
of computees (indicated with c, c′, . . .). Given a fluent f , f and ¬f are referred
to as fluent literals. We use l, l′, . . . to denote fluent literals. Moreover, given a
fluent literal l, by l we denote its complement, namely ¬f if l is f , f if l is ¬f .

We assume that the set of fluents is partitioned in two disjoint sets: mental
fluents and sensing fluents. Intuitively, mental fluents represent properties that
the computee itself is able to plan for so that they can be satisfied, but can
also be observed. On the other hand, sensing fluents represent properties which
are not under the control of the computee and can only be observed by sensing
the external environment. For example, problem fixed and get resource may
represent mental fluents, namely the properties that (given) problems be fixed
and (given) resources be obtained, whereas request accepted and connection on
may represent sensing fluents, namely the properties that a request for some
(given) resource is accepted and that some (given) connection is active.

We also assume that the set of action operators is partitioned into three
disjoint sets: sensing, physical, and communication action operators. Intuitively,
sensing actions represent actions that the computee performs in order to es-
tablish whether some fluents hold in the environment. These fluents may be
sensing fluents, but they can also represent effects of actions that the computee
may need to check in the environment. On the other hand, physical actions
are actions that the computee performs in order to achieve some specific effect,
which typically causes some changes in the environment. Finally, communication
actions are actions which involve communications with other computees. For ex-
ample, sense(connection on, t) is a sensing action, aiming at checking whether
or not the sensing fluent connection on holds; do(clear table, t) may be a phys-
ical action operator, and tell(c1, c2, request(r1), d, t) may be a communication
action expressing that computee c1 is requesting from computee c2 the resource
r1 within a dialogue with identifier d, at time t.

Goals. A goal G is a pair of the form 〈l[t], G′〉 where

– l[t] is the fluent literal of the goal, referring to a time variable t;
– G′ is the parent of G.

346 A. Bracciali et al.

Top-level goals are goals of the form G = 〈l[t],⊥〉. As an example, we may
have a top-level goal G of the form 〈problem fixed(p2, t),⊥〉 and a subgoal G′

of G of the form 〈get resource(r1, t′), G〉, with TCS = {5 ≤ t ≤ 10, 5 ≤ t′ < t},
meaning that to fix problem p2 within a certain time interval, the computee needs
to have (or acquire) a resource r1 within an appropriate other time interval.

Mental (sensing) goals are goals whose fluent is mental (sensing, respectively).

Actions. An action A is a triple of the form 〈a[t], G, C〉 where

– a[t] is the operator of the action, referring to the execution time variable t;
– G is the goal towards which the action contributes (i.e., the action belongs

to a plan for the goal G). G may be a post-condition for A (but there may
be other such post-conditions).

– C are the preconditions which should hold in order for the action to take
place successfully; syntactically, C is a conjunction of (timed) fluent literals.

As an example, we may have an action 〈tell(c1, c2, request(r1), d, , t′′), G′, {}〉
within the state of some computee c1, where G′ is given above, 5 ≤ t′′ < t′ also
belongs to TCS, and c2 is the name of some other computee.

(Non-)Sensing actions are actions whose operator is a (non-)sensing one.

Time Variables. In both a timed fluent literal l[t] and a timed operator a[t], the
time t is a time variable. This variable is treated as an existentially quantified
variable, the scope of which is the whole state of the computee. Whenever a goal
(respectively action) is introduced within a state, the time variable associated
with the goal (respectively action) is to be understood as a distinguished, fresh
variable, serving as its identifier. When a time variable is instantiated (e.g., at
action execution time) the actual instantiation is recorded in (the KB0 part of)
the state of the computee. This allows us to keep different instances of the same
action (respectively goal) distinguished.

For simplicity, we assume that, given a state 〈KB, Goals, P lan, TCS〉, all
occurrences of variables in Goals and Plan are time variables. In other words, our
goals and actions are ground except for the time parameter. Variables other than
time variables in goals and actions can be dealt with similarly. We concentrate
on time variables as time plays a fundamental role in our model, and we avoid
dealing with the other variables to keep the presentation of the model simple.

KB0. Amongst the various modules in KB, we distinguish KB0, which records
the actions which have been executed (by the computee or by others) and their
time of execution as well as the properties (i.e. fluents and their negation) which
have been observed and the time of the observation. Formally, KB0 contains
assertions of the form:

– executed(a[t], τ) where a[t] is a timed operator and τ is a time constant,
meaning that action a has been executed at time t = τ by the computee.

– observed(l[t], τ) where l[t] is a timed fluent literal and τ is a time constant,
meaning that the property l has been observed to hold at time t = τ .

The KGP Model of Agency for Global Computing 347

– observed(c, a[τ ′], τ) where c is a computee’s name, different from the name of
the computee whose state we are defining, τ and τ ′ are time constants, and
a is an action operator. This means that the given computee has observed
at time τ that computee c has executed the action a at time τ ′ (τ ′ ≤ τ).

Note that assertions in KB0 of the third kind are variable-free. These are
intended, e.g., to represent reception of communication from other computees.
Instead, assertions of the first two kinds refer explicitly to a time variable t. This
representation with explicit variables allows us to instantiate implicitly the time
variable of (executed) actions and (observed) goals, via Σ(S) (see below), while
keeping the time variable explicitly as an identifier for actions and goals. As a
consequence, the time variables in KB0 are not properly speaking variables as
such.

Since KB0 is used in all the remaining modules in KB, and these are rep-
resented in a logic programming style, we are not allowed to have assertions
with existentially quantified variables. Hence, the various knowledge bases will
include a variant of KB0, namely KB0Σ(S), where Σ(S) is defined below. We
will refer to KB0Σ(S) simply as KB0.

Valuation of Time Variables and Temporal Constraints.
Given a state S=〈KB, Goals, P lan, TCS〉, we denote by Σ(S) (or simply Σ,
when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

Intuitively, Σ extracts from KB0 the instantiation of the (existentially quan-
tified) time variables in Plan and Goals, derived from having executed (some
of the) actions in Plan and having observed that (some of the) fluents in Goals
hold (or do not hold). Thus, KB0 provides a “virtual” representation of Σ.

Below, Σ(t), for some time variable t, will return the value of t in Σ, if there
exists one, namely, if t = τ ∈ Σ, then Σ(t) = τ . The valuation of any temporal
constraint T c in a state S will always take Σ into account. Namely, any ground
valuation for the temporal variables in T c must agree with Σ on the temporal
variables assigned to in Σ.

3 Computational Models for Capabilities

The reasoning capabilities of Planning, Reactivity, Identification of Precondi-
tions and Temporal Reasoning are specified within the framework of Abductive
Logic Programming (ALP), and the reasoning capability of Goal Decision is
specified within the framework of Logic Programming with Priorities (LPP).
Their computational models rely upon proof procedures for ALP and LPP (as
appropriate). In this section, we briefly recall ALP and LPP, and summarise
the concrete proof procedures used for the computational model of the reason-
ing capabilities. Finally, we give detailed specification and computational model
for Planning (chosen as the representative ALP-based capability) and for Goal

348 A. Bracciali et al.

Decision. The remaining capabilities, of Identification of Preconditions and Re-
activity, are briefly mentioned. We also state the soundness results for these
capabilities, building upon the soundness results for the underlying procedures.
For details and proofs see [5].

3.1 ALP-Based Capabilities

Background: Abductive Logic Programming with Constraints. An ab-
ductive logic program with constraints is a tuple 〈/, P, A, I〉 where:

– / is a structure consisting of a domain D(/) and a set of constraint pred-
icates including equality, together with an assignment of relations on D(/)
for each constraint predicate. The structure is equipped with a notion of
/-satisfiability. Given (a set of) constraints C, |=� C stands for C is /-
satisfiable, and σ |=� C, for some grounding σ of the variables of C over
D(/), stands for C is /-satisfied by σ.

– P is a normal logic program with constraints, namely a set of rules of the
form H ← L1 ∧ . . .∧Ln with H atom, Li literals, and n ≥ 0. Literals can be
positive, namely atoms, or negative, namely of the form not B, where B is an
atom, or constraint atoms over /. The negation symbol not indicates nega-
tion as failure [8]. All variables in H, Li are implicitly universally quantified,
with scope the entire rule. If n = 0, the rule is called a fact.

– A is a set of abducible predicates in the language of P . Atoms whose predicate
is abducible are referred to as abducible atoms or simply as abducibles.

– I is a set of integrity constraints, that is, a set of sentences in the language
of P . All the integrity constraints in the KGP model have the implicative
form L1 ∧ . . . ∧ Ln ⇒ A1 ∨ . . . ∨ Am (n ≥ 0, m > 0) where Li are literals
(as in the case of rules)3, Aj are atoms (possibly the special atom false).
All variables in the integrity constraints are implicitly universally quantified
from the outside.

Given an abductive logic program 〈/, P, A, I〉 and a formula (query) Q, which
is an (implicitly existentially quantified) conjunction of literals in the language of
the abductive logic program, the purpose of abduction is to find a (possibly min-
imal) set of (ground) abducible atoms Γ which, together with P , “entails” (an
appropriate ground instantiation of) Q, with respect to some notion of “entail-
ment” that the language of P is equipped with, and such that the extension of P
“satisfies” I (see [19] for possible notions of integrity constraint “satisfaction”).
Here, the notion of “entailment” depends on the semantics associated with the
logic program P (there are many different possible choices for this [19]), ap-
propriately combined with the notion of /−satisfiability, as in Constraint Logic
Programming [16]. We will refer to such a combined semantics as |=LP (�).

Formally and concretely, given a query Q, a set Δ of (possibly non-ground)
abducible atoms, and a set C of (possibly non-ground) constraints, the pair
(Δ, C) is an abductive answer (with constraints) for Q, with respect to an ab-
ductive logic program with constraints 〈/, P, A, I〉, iff for all groundings σ for

3 If n = 0, then L1, . . . , Ln represents the special atom true.

The KGP Model of Agency for Global Computing 349

the variables in Q,Δ, C such that σ |=� C, it holds that (i) P ∪Δσ |=LP (�) Qσ,
and (ii) P ∪Δσ |=LP (�) I. Here, Δσ plays the role of Γ in the earlier informal
description of abductive answer.

Such notion can be extended to take into account an initial set of (possibly
non-ground) abducible atoms Δ0 and an initial set of (possibly non-ground) con-
straint atoms C0, so that an abductive answer for Q, with respect to 〈/, P, A, I〉,
Δ0, C0, is a pair (Δ, C) such that Δ∩Δ0 = {}, C∩C0 = {}, and (Δ∪Δ0, C∪C0)
is an abductive answer for Q, with respect to 〈/, P, A, I〉 (in the earlier sense).

In the sequel, for simplicitly, we will omit / from abductive logic programs.
In ALP (with constraints), abductive answers are computed via abductive

proof procedures, which typically extend SLD-resolution, providing the compu-
tational backbone underneath most logic programming systems, in order to check
and enforce integrity constraint satisfaction, the generation of abducible atoms,
and the satisfiability of constraint atoms (if any). There are a number of such
procedures in the literature, e.g. the A-system [24]. To provide a computational
counterpart to (the abductive tasks in) the KGP model, we propose and adopt
the CIFF proof procedure [11, 12], extending the IFF proof procedure [13] for the
purposes of the SOCS project. This procedure is summarised next. Full details
are given in [11].

CIFF: A Proof Procedure for ALP with Constraints. CIFF extends IFF
by dealing with constraints and non-allowed abductive logic programs, by tack-
ling the issue of allowedness dynamically, i.e. at runtime, rather than adopting
a static and overly strict set of allowedness conditions as in IFF [13]. To this
end, the CIFF procedure includes a dynamic allowedness rule which is triggered
whenever the procedure encounters a particular formula it cannot manipulate
correctly due to a problematic quantification pattern.

In defining CIFF, we assume the availability of a sound and complete con-
straint solver, that we use as a black box component of the procedure. We do not
make any assumption on the language of constraints, except for assuming that
it includes a relation symbol for equality and it is closed under complements.

Input. Given an abductive logic program 〈P, A, I〉, the input to the CIFF pro-
cedure consists of a query Q, the set of integrity constraints I, and, in the back-
ground, a theory Th, which is a set of iff-definitions obtained by completing [8]
the non-abducible, non-constraint predicates in the language of 〈P, A, I〉. Thus,
the set of abducibles A is implicitly the set of predicates for which there is no
definition in Th. The iff-definitions in Th have the following form:

p(X1, . . . , Xk) ↔ D1 ∨ · · · ∨Dn

Negative literals are treated as implications (e.g. not q(X, Y) is treated as
q(X, Y) ⇒ false).

Output. There are three possible outputs of the CIFF procedure: (1) the proce-
dure succeeds and produces an abductive answer to the query Q; (2) the pro-
cedure fails, thereby indicating that there is no abductive answer to the query

350 A. Bracciali et al.

Q; and (3) the procedure reports that computing an abductive answer for the
query Q is not possible, because a critical part of the input is not allowed.

Proof Rules. The CIFF procedure generates outputs from inputs by repeat-
edly applying a number of proof rules to the input. During this process, CIFF
manipulates, essentially, formulas that are either atoms or implications or dis-
junctions of atoms and implications. Such formulas are referred to individually
as goals. Implications are obtained by manipulating integrity constraints and
(the rewriting of) negative literals. The theory Th is kept in the background
and is only used to unfold defined predicates as they are being selected. Dis-
junction may thus be generated, and splitting will be applied to give rise to
different branches in the proof search tree. The root of this tree is the original
input (Q ∧ I). Nodes of this tree are sets (conjunctions) of goals. CIFF re-
peatedly manipulates a selected node, via the proof rules, by rewriting goals
in the node, adding new goals to the node, deleting superfluous goals from
it, or adding false to the node (and thus effectively deleting the node com-
pletely). For a full description of the proof rules, see [11]. Here, we only men-
tion:

– Case analysis for constraints: Replace any goal of the form Con ∧ A ⇒ B,
where Con is a constraint not containing any universally quantified variables,
by [Con∧(A ⇒ B)]∨Con. There is a similar case analysis rule for equalities.

– Constraint solving: Replace any node containing an unsatisfiable set of con-
straints (as atoms) by false.

– Dynamic allowedness rule: Label nodes with problematic quantification pat-
terns as undefined.

A node containing false is called a failure node. If all leaf nodes in a search
proof tree are failure nodes, then the derivation leading to that tree is said to be
failed (the intuition being that there exists no answer to the query in question).
A node to which no more proof rules can be applied is called a final node. A final
node that is not a failure node and which has not been labelled as undefined is
called a success node.

Answer Extraction. An extracted answer from a final success node N is a pair
〈Δ, C〉, where Δ is the set of abducible atoms in N and C is obtained from the
set of constraint atoms, equalities and disequalities in N . Below, we will use the
following notations:

– 〈P, A, I〉, Q 0CIFF (Δ, C) to stand for (Δ, C) is the answer extracted from
a final success node obtained from the initial goal Q ∧ I;

– 〈P, A, I〉, Q,Δ0, C0 0CIFF (Δ, C) to stand for 〈P, A, I〉, Q ∧Δ0 ∧ C0 0CIFF

(Δ ∪Δ0, C ∪ C0) and Δ ∩Δ0 = {} and C ∩ C0 = {};
– 〈P, A, I〉, Q 0CIFF fail to stand for: there is a failed derivation for Q;
– 〈P, A, I〉, Q 0CIFF flounder to stand for: there is a search proof tree for Q

with no success leaf nodes and at least one undefined leaf node.

Soundness Results. We have shown that CIFF is sound [11, 12], and in particular
the following result:

The KGP Model of Agency for Global Computing 351

Theorem 1. (CIFF Soundness of Success) Given a query Q and initial Δ0, C0:
if 〈P, A, I〉, Q,Δ0, C0 0CIFF (Δ, C)
then (Δ, C) is an abductive answer for Q, with respect to 〈P, A, I〉,Δ0, C0.

Specification and Computational Model for the ALP-Based Capabil-
ities. KBplan, KBreact, KBTR, and KBpre are all specified within the frame-
work of the event calculus (EC) for reasoning about actions, events and changes
[28]. Below, we give the abductive logic program KBplan and the logic program
KBpre. KBreact is an extension of KBplan, incorporating additional integrity
constraints representing reactive rules. KBTR is another variant of the EC, shar-
ing a common kernel with KBplan. Both KBreact and KBTR are fully described
in [5]. KBTR is also given in [6].

Abductive Event Calculus for KBplan and KBpre. In a nutshell, the EC allows
to write meta-logic programs which ”talk” about object-level concepts of fluents,
events (that we interpret as action operations), and time points. The main meta-
predicates of the formalism are: holds at(F, T) (a fluent F holds at a time T),
clipped(T1, F, T2) (a fluent F is clipped - from holding to not holding - between
times T1 and T2), declipped(T1, F, T2) (a fluent F is declipped - from not holding
to holding - between times T1 and T2), initially(F) (a fluent F holds from the
initial time, say time 0), happens(O, T) (an operation O happens at a time T),
initiates(O, T, F) (a fluent F starts to hold after an operation O at time T)
and terminates(O, T, F) (a fluent F ceases to hold after an operation O at time
T). Roughly speaking, in a planning setting the last two predicates represent
the cause-effects links between operations and fluents in the modelled world. We
will also use a meta-predicate precondition(O, F) (the fluent F is one of the
preconditions for the executability of the operation O).

The EC allows to represent a wide variety of phenomena, including operations
with indirect effects, non-deterministic operations, and concurrent operations
[33]. A number of abductive variants of the EC have been proposed to deal with
planning problems, e.g. see [32]. Here, we propose a novel variant, somewhat
inspired by the E-language [21], to allow situated agents to generate partial
plans in a dynamic environment.

We give KBplan= 〈Pplan, Aplan, Iplan〉. Pplan consists of two parts: domain-
independent rules and domain-dependent rules. The basic domain-independent
rules, directly borrowed from the original EC, are:

holds at(F, T2) ← happens(O, T1), initiates(O, T1, F),
T1 < T2, not clipped(T1, F, T2)

holds at(¬F, T2) ← happens(O, T1), terminates(O, T1, F),
T1 < T2, not declipped(T1, F, T2)

holds at(F, T) ← initially(F), 0 ≤ T, not clipped(0, F, T)
holds at(¬F, T) ← initially(¬F), 0 ≤ T, not declipped(0, F, T)
clipped(T1, F, T2) ← happens(O, T), terminates(O, T, F), T1 ≤ T < T2

declipped(T1, F, T2) ← happens(O, T), initiates(O, T, F), T1 ≤ T < T2

352 A. Bracciali et al.

The domain-dependent rules define initiates, terminates, and initially, e.g.

initiates(go(X, L1, L2), T, at(X, L2)) ← holds at(mobile(X), T)
initiates(go(X, L1, L2), T, free(L1)) ← holds at(mobile(X), T)
terminates(go(X, L1, L2), T, at(X, L1) ← holds at(mobile(X), T), L1 �= L2

terminates(go(X, L1, L2), T, free(L2) ← holds at(mobile(X), T), L1 �= L2

initially(at(bob, (1, 1)))

Namely, the operation go from one location L1 to some other location L2

initiates the agent (robot) X being at location L2 and location L1 being free and
terminates X being at location L1 and location L2 being free, provided that X
is mobile. Moreover, some agent bob is initially at location (1, 1). The conditions
for the rules defining initiates and terminates can be seen as preconditions for
the effects of the operator go to take place. Preconditions for the executability
of operators are specified within KBpre, which contains a set of rules defining
the predicate precondition, e.g.

precondition(go(X, L1, L2), at(X, L1))
precondition(go(X, L1, L2), free(L2))

namely the preconditions of the operator go(X, L1, L2) are that X is at the
initial location L1 and that location L2 X is moving to is free.

In order to accommodate (partial) planning we will assume that the domain-
independent part in Pplan also contains the rules:

happens(O, T) ← assume happens(O, T)
holds at(F, T) ← assume holds(F, T1), T1 ≤ T2, not clipped(T1, F, T2)
holds at(¬F, T) ← assume holds(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)

i.e. an operator can be made to happen and a fluent can be made to hold sim-
ply by assuming them, where assume happens and assume holds are the only
predicates in Aplan in KBplan. This supports partial planning as follows. Actions
〈a[t], , 〉 in the state amount to atoms assume happens(a, t), thus, abducing
an atom in the predicate assume happens amounts to planning to execute the
corresponding action. Moreover, goals 〈l[t], 〉 in the state correspond to atoms
holds at(l, t) and assume holds(l, t) (depending on whether they have already
been planned for or not): thus, abducing atoms in the predicate assume holds
amounts to planning to further plan for the corresponding sub-goal.
Iplan contains the following domain-independent integrity constraints:
holds at(F, T), holds at(¬F, T) ⇒ false
assume happens(O, T), precondition(O, P) ⇒ holds at(P, T)
assume happens(O, T), not executed(O, T), time now(T ′) ⇒ T > T ′

namely a fluent and its negation cannot hold at the same time, when assuming
(planning) that some action will happen, we need to enforce that each of its
preconditions hold and that this action will be executable in the future.

To allow agents to draw conclusions from the contents of KB0, which rep-
resent the “narrative” part of the computee’s knowledge, the following bridge
rules are also amongst the domain independent rules of Pplan:

The KGP Model of Agency for Global Computing 353

clipped(T1, F, T2) ← observed(¬F, T), T1 ≤ T < T2

declipped(T1, F, T2) ← observed(F, T), T1 ≤ T < T2

holds at(F, T2) ← observed(F, T1), T1 ≤ T2, not clipped(T1, F, T2)
holds at(¬F, T2) ← observed(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)
happens(O, T) ← executed(O, T)
happens(O, T) ← observed(C,O, T)

Note that we assume that the value of a fluent literal is changed according
to observations only from the moment the observations are made, and actions
by other agents have effects only from the time observations are made that they
have been executed, rather than by the execution time itself. These choices are
dictated by the rationale that observations can only be considered and reasoned
upon from the moment the planning agent makes them.

Below, KBτ
plan=〈Pplan ∪ {time now(τ)}, Aplan, Iplan〉.

Planning. The planning capability |=τ
plan is specified as follows4. Let S = 〈KB,

Goals, P lan, TCS〉 be a state, and G = 〈l[t], 〉 be a mental goal in Goals. Let

– Δ0 =
⋃

〈a[t′], , 〉∈Plan{assume happens(a, t′)}∪⋃
〈l′[t′], 〉∈Goals−{G}{assume holds(l′, t′)}

– C0 = TCS ∧Σ(S).

Then, S, G |=τ
plan (As,Gs, T c) where

– As = {a[t′] | assume happens(a, t′) ∈ Δ} and
– Gs = {l′[t′] | assume holds(l′, t′) ∈ Δ}

for some (Δ, T c) which is an abductive answer for holds at(l, t), wrt KBτ
plan,

Δ0 C0. If no such abductive answer exists, then S, G |=τ
plan ⊥, where ⊥ is used

here to indicate failure.
The computational counterpart of |=τ

plan, given by 0τ
plan, is defined in terms

of CIFF, as follows.

– S, G 0τ
plan (As,Gs, T c) iff

• KBτ
plan, holds at(l, t),Δ0, C0 0CIFF (Δ, T c)

• As = {a[t]|assume happens(a, t) ∈ Δ}
• Gs = {g[t]|assume holds(l, t) ∈ Δ}.

– S, G 0τ
plan ⊥ iff KBτ

plan, holds at(l, t),Δ0, C0 0CIFF X and X = fail or
X = flounder.

Directly from theorem 1, we prove soundness of 0τ
plan wrt |=τ

plan, in the case
of success.

Theorem 2. (Planning Soundness of Success)
If 〈KB, Goals, P lan, TCS〉, G 0τ

plan (As,Gs, T c),
then 〈KB, Goals, P lan, TCS〉, G |=τ

plan (As,Gs, T c).

4 In the full model, we consider planning for multiple goals concurrently. Here, for
simplicity we present the case of planning for single goals only.

354 A. Bracciali et al.

Identification of Preconditions. This capability is specified as follows: given a
timed action operator a[t], KB, a[t] |=pre Cs iff

– either there exists c such that KBpre |=LP precondition(a, c) and Cs =∧
{c[t] | KBpre |=LP precondition(a, c)}

– or, otherwise, Cs = true.

The computational counterpart 0pre of this capability can be obtained by
computing |=LP suitably. Trivially, if a sound and complete realisation of |=LP

is used, the resulting 0pre is sound and complete with respect to |=pre.

Reactivity. The specification of |=τ
react and the provision of 0τ

react are very similar
to those of |=τ

plan and 0τ
plan, and are omitted here for lack of space.

Temporal Reasoning. The temporal reasoning capability |=TR is invoked by
other components of the KGP model (namely the Goal Decision capability, the
Goal Revision transition and some of the selection functions, see section 4) to
prove or disprove that a given (possibly temporally constrained) fluent literal
holds (wrt the given theory KBTR). We briefly summarise the specification of
|=TR (see [5, 6] for the details).

– KBTR is another variant of the EC, similar to KBplan, and, analogously,
is divided into a domain-independent part, a domain dependent part, and
a narrative part KB0, assumed not to contain “inconsistent” observations.
The set of abducibles in KBTR has assume holds as its only abducible.

– |=TR is invoked by the Goal Decision capability to prove that a fluent literal
l[t], referring to a time constant t, holds wrt KBTR, denoted as KB |=TR l[t].
|=TR is invoked by the revision transitions and selection functions to prove
that a fluent literal l[t], referring to a time variable t constrained by some
T c, holds wrt KBTR, denoted as KB |=TR l[t] ∧ T c.

– |=TR is understood skeptically, as follows. KB |=TR l[t] ∧ T c (where T c
may be empty) iff (i) there exists an abductive answer for holds at(l, t)∧T c,
given KBTR, and (ii) there exists no abductive answer for holds at(l, t)∧T c,
given KBTR, namely the fluent literal can be proven abductively, and its
complement cannot.

The computational counterpart of |=TR, given by 0TR, is given by first pro-
viding a transformed version KB′

TR of KBTR, and then by appropriate calls to
the CIFF proof procedure, as follows (all details can be found in [6]).

– The transformation of KBTR into KB′
TR relies upon the intuition that

changes may happen only at significant time points, called oases, when
events occur, while in the remaining time intervals, called deserts, noth-
ing changes. Hence, it is possible to check for the validity of the query fluent
literals and the integrity constraints in KBTR with respect to oases only.
The transformed KB′

TR addresses to some extent computational issues of
viable realisation and scalability.

The KGP Model of Agency for Global Computing 355

– 0TR is defined as follows, given l[t] ∧ T c (with T c possibly empty):
KB 0TR l[t] ∧ T c iff
• KB′

TR, holds at(l, t) ∧ T c 0CIFF (Δ, C), for some (Δ, C), and
• KB′

TR, holds at(l, t) ∧ T c 0CIFF fail.
KB 0fail

TR l[t] ∧ T c iff
• KB′

TR, holds at(l, t) ∧ T c 0CIFF fail, or
• KB′

TR, holds at(l, t) ∧ T c 0CIFF (Δ, C), for some (Δ, C), and
KB′

TR, holds at(l, t) ∧ T c 0CIFF (Δ′, C ′), for some (Δ′, C ′).

The following result of soundness directly follows from theorem 1 and from
the equivalence between KBTR and KB′

TR.

Theorem 3. (Temporal Reasoning Soundness)
Given l[t] ∧ T c (with T c possibly empty):

If KBTR 0TR l[t] ∧ T c then KBTR |=TR l[t] ∧ T c.
If KBTR 0fail

TR l[t] ∧ T c then KBTR �|=TR l[t] ∧ T c.

3.2 LPP-Based Capability: Goal Decision

Background: Logic Programming with Priorities. For the purposes of this
paper, a logic program with priorities, referred to as T , consists of four parts:

(i) a low-level part P , consisting of a logic program; each rule in P is assigned
a name, which is a term; e.g., one such rule could be

n(X) : p(X) ← q(X, Y), r(Y)
with name n(X);

(ii) a high-level part H, specifying conditional, dynamic priorities amongst rules
in P ; e.g., one such priority could be

h(X) : m(X) 1 n(X) ← c(X)
to be read: if (some instance of) the condition c(X) holds, then (the cor-
responding instance of) the rule named by m(X) should be given higher
priority than (the corresponding instance of) the rule named by n(X).

(iii) an auxiliary part A, defining predicates occurring in the conditions of rules
in P,H and not in the conclusions of any rule in P ;

(iv) a notion of incompatibility which, for our purposes, can be assumed to be
given as a set of rules defining the predicate incompatible, e.g.

incompatible(p(X), p′(X))
to be read: any instance of the literal p(X) is incompatible with the cor-
responding instance of the literal p′(X). We assume that incompatibility is
symmetric, and refer to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, that
we denote by |=pr, defined differently by different approaches to LPP, wrt some
given underlying logic programming semantics |=LP . Intuitively, T |=prα iff α is
the conclusion (wrt |=LP) of a sub-theory of P∪A which is “preferred” wrt H∪A
in T over any other sub-theory of P ∪A that derives a conclusion incompatible
with α (wrt I). For example, in [30, 25, 22], |=pr is defined via argumentation
(see the next section).

356 A. Bracciali et al.

The concrete framework for LPP that we adopt within the computational
counterpart of the KGP model is that of Logic Programming without Negation
as Failure (LPwNF) [9] suitably extended to deal with dynamic preferences [22].
Other concrete frameworks that could be used for LPP instead are, for instance,
those presented in [30, 25].

LPwNF : An Argumentation-Based Framework for LPP. In this section,
we summarise the main features of LPwNF and the notion of preference reason-
ing |=pr, given with respect to an argumentation-based formulation of LPwNF .

LPwNF is a concrete LPP framework, whereby the various components of
a theory T , as defined earlier, are as follows:

(i) The low-level part P consists of labelled propositional rules of the form
label : l ← l1, ..., ln, where l, l1, ..., ln are atoms a or explicitly negative
literals ¬a. The underlying semantics, |=LP , is given by the single inference
rule of modus ponens. Non-ground rules are represented via all their ground
instances in the given Herbrand universe of the program.

(ii) The high-level part H consists of propositional rules of the form label : l 1
l′ ← l1, ..., ln, where l1, ..., ln are atoms or explicitly negative literals and l, l′

are labels of rules in P .
(iii) The auxiliary part A is a set of propositional rules of the form l ← l1, ..., ln.
(iv) The notion of incompatibility includes incompatible(p,¬p), for all atoms p,

and incompatible(r 1 s, s 1 r), for all labels of rules r and s.

We realise the notion of preference reasoning |=pr for LPwNF through ar-
gumentation. Argumentation has recently been shown to be a useful framework
for formalising non-monotonic reasoning and other forms of reasoning (see e.g.
[4, 10, 20, 31, 30]). In general, an argumentation framework is a pair (Th, At)
where Th is a theory in some background (monotonic) logic, equipped with an
entailment |=Th, and At is a binary attacking relation on the subsets of Th, i.e.
At ⊆ 2Th×2Th. The subsets of Th form the arguments of the framework and At
is therefore an attacking relation between arguments. We will write Δ attacks
Δ′ iff (Δ,Δ′) ∈ At.

The semantics of an argumentation framework is based upon the following
notion of admissible argument. An argument Δ ⊆ Th is admissible iff

– Δ does not attack itself,
– for all arguments Δ′ ⊆ Th, if Δ′ attacks Δ, then Δ (counter-)attacks Δ′.

To provide |=pr for an LPwNF theory T =(P,H, A, I), we view the latter as
a concrete argumentation framework (Th, At) as follows. The set of arguments
Th is given by P ∪H ∪ A, with |=Th given by |=LP . The attacking relation At
is realised via a notion of conflict (using the notion of incompatibility I of T)
together with a notion of strength between arguments (using the preference rules
in the H component of T). Then, the preference semantics |=pr of an LPwNF
theory is given through argumentation in terms of the maximally admissible
subsets of the corresponding argumentation framework. Usually, two variants of
|=pr are defined. Given an LPwNF theory T , the corresponding argumentation
framework (Th, At) and a formula F ,

The KGP Model of Agency for Global Computing 357

– T |=cred
pr F iff there is one maximal (with respect to set inclusion) admissible

argument Δ of (Th, At) where F holds, i.e. Δ |=LP F ;
– T |=skep

pr F iff T |=cred
pr F and, for any G s.t. I ∪A |=LP incompatible(F, G),

it holds that T �|=cred
pr G.

In the KGP model, the preference entailment, |=pr, is given by the skeptical
entailment |=skep

pr in this section, when we define the Goal Decision capability,
and by |=cred

pr in section 5, when we define the operational trace of computees
via cycle theories.

Computing Preferential Reasoning in LPwNF . The computational coun-
terpart of |=pr for LPwNF is realised via a proof procedure, referred to as
GORGIAS [5]. Given a formula F , GORGIAS aims to construct an admissible
argument, Δ, that derives F , under the background logic |=LP .

GORGIAS is based on an existing proof theory for computing admissible
arguments for abstract argumentation frameworks [23]. This prooof theory is
given in terms of derivations of trees, where nodes are arguments and each node
is labelled as “attack” or “defence”. A defence node is followed by a set of
children attack nodes, one for each of its possible minimal (counte-)attacks. An
attack node is followed by a defence node containing a (counter-)attack against
its parent. Successful derivations terminate with a tree whose root, Δ, is an
admissible argument supporting, via |=LP , the initially given formula F . The
root node Δ0 of the initial tree is computed by reducing the given formula F
into a minimal set that concludes F via |=LP .

GORGIAS specialises this abstract proof theory by incorportating the LPwNF
specific way of computing attacks and counter-attacks. Any node N of the tree
results from first choosing a “culprit” conclusion c of the parent node of N and
then reducing (by resolution) some conflicting (incompatible) literal, c, of c so
that N minimally entails c under the background logic |=LP .

The GORGIAS proof procedure then provides the following derivability re-
lations for LPwNF . Given a theory T in LPwNF and a literal L, let (Th, At)
be the corresponding argumentation framework. Then

– T 0cred
pr L iff there exists a successful derivation of GORGIAS for L.

– T 0sk
pr L iff T 0cred

pr L and T �0cred
pr L for any L such that I ∪ A |=LP

incompatible(L,L).

We can then show that for finite theories of LPwNF , these derivability re-
lations 0sk

pr , 0cred
pr based upon GORGIAS, are sound and complete, as follows.

Theorem 4. (soundness and completeness of 0cred
pr and 0pr) Let T be a finite

theory of LPwNF . Then the derivability relation 0cred
pr is sound and complete

with respect to |=cred
pr , provided that GORGIAS uses a sound and complete reali-

sation of |=LP . Hence the skeptical relation 0sk
pr is also sound and complete with

respect to |=skep
pr , provided that GORGIAS uses a sound and complete realisation

of |=LP .

358 A. Bracciali et al.

Specification and Computational Model for Goal Decision. The com-
putee Goal Decision capability, |=τ

GD, selects, at a given instant, the top level
goals to be pursued. These goals are preferred by the computee at the time of
their selection, but this may change over time. This capability relies directly on
the underlying preference reasoning within the LPwNF framework. It simply
uses this form of reasoning with a specific LPwNF theory, KBGD, in which the
computee represents its goal preference policy.

The knowledge base KBGD is written in four parts in the standard way as for
any theory in LPwNF . The details of the specific form of its rules are ommitted
due to lack of space. The main specialised forms of sentences in KBGD are
the following. Statements of incompatibility in KBGD, incompatible(l1, l2), are
amongst literals, l1 and l2, referring to a subset of the fluents in the language of
the computee separated out as the set of goal fluents. Rules in the basic (low-
level) part of KBGD have conclusions of the form 〈g[t], T g〉 where g is a goal
fluent, Tg is a (possibly empty) set of temporal constraints and the time variable
t is existentially quantified with scope the conclusion of the rule. The auxiliary
part, A, of KBGD is augmented with KB0∪KBTR and so the conditions of the
rules in KBGD are evaluated by combining the background derivability |=LP of
the LPwNF framework with the Temporal Reasoning capability |=TR. Finally,
any rule in KBGD may have in its body a special atom, denoted by now(τ) that
refers to the (current) time τ at which the capability of goal decision is applied
by the computee. We will denote by KBτ

GD the knowledge base obtained by
adding to (the auxiliary part of) KBGD the atom now(τ).

The capability of |=τ
GD is defined directly in terms of the preference, |=pr, of

LPwNF as follows. Given a state 〈KB, Goals, P lan, TCS〉, and a time point τ ,

KB |=τ
GD Gs

iff Gs is a maximal set, Gs = {〈g1[t1], T g1〉, . . . , 〈gn[tn], T gn〉}, n ≥ 0, where gi

are goal fluent literals and Tgi are temporal constraints on ti, such that:

KBτ
GD |=pr 〈g1[t1], T g1〉 ∧ . . . ∧ 〈gn[tn], T gn〉

This means that a new set of goals Gs is generated that is currently (skepti-
cally) preferred under the preference policy represented in KBGD and the current
information in KB0, via the use of the Temporal Reasoning capability by |=pr.
Note that any two goals in Gs are necessarily compatible with each other. Note
also that |=τ

GD may return an empty set of goals when there are no skeptically
preferred goals at the time τ of application of this capability.

The derivability relation, 0τ
GD, and the computational model for Goal De-

cision can be drawn directly from the general GORGIAS proof procedure for
LPwNF and the derivability relations 0cred

pr and 0pr that this provides, as pre-
sented earlier. A simple but relatively inefficient way to compute 0τ

GD would
then be to generate one by one skeptical goals, via |=pr, adding the most re-
cently generated goal to the previous goals and re-checking, again via 0pr, that
the whole set remains a skeptical conclusion. A more efficient algorithm for com-
puting 0τ

GD that exploits some of the special features of KBGD relies only on

The KGP Model of Agency for Global Computing 359

the credulous derivability relation of LPwNF to generate in the first step a set
of candidate goals and then, using checks of incompatibility, to filter from this
the required goals.

Let us assume that the knowledge base, KBτ
GD, for any given current time

τ together with KBTR ∪ KB0 added to the auxiliary part of KBGD is such
that only a finite number of goals can be derived from T = KBτ

GD ∪KBTR ∪
KB0 via the background logic |=LP . We call this assumption the goal finiteness
assumption. We also assume that the auxiliary part of T is consistent. Then,
the following soundness result holds, directly from theorem 4.

Theorem 5. (Goal Decision Soundness) Let T = KBτ
GD ∪KBTR ∪KB0 have

goal finiteness property and a consistent auxiliary part. Suppose that a sound and
complete realisation of |=LP is used within 0cred

pr . If T 0τ
GD Gs then T |=τ

GD Gs.

4 Computational Model for Transitions

The KGP model relies upon the state transitions GI, PI, RE, SI, POI, AOI,
AE, GR, PR, as discussed in section 2. In [5], we have provided computational
counterparts 0GI , 0PI , 0RE , 0SI , 0POI , 0AOI , 0AE , 0GR, 0PR for this tran-
sitions, defined via transition rules themselves, obtained from the specifications
by replacing calls to capabilities appropriately by calls to their computational
counterparts. Below, for one concrete transition (PI), we first summarise the
formal specification, and then provide the computational countertpart.

Plan Introduction

This transition takes as input a state and a set of goals in the state (that have
been selected by the goal selection function, see below) and produces a new state
by calling the computee’s Planning (|=τ

plan, see section 3.1) and Identification of
Preconditions (|=pre, see section 3.1) capabilities. For simplicity, we will provide
specification and computational counterpart of this transition in the case of a
single input goal (see [5] for the general case of multiple input goals).

Specification of (PI)
〈KB, Goals, P lan, TCS〉 G

〈KB, Goals′, P lan′, TCS′〉 τ

where G is a goal selected for planning and

Goals′ = Goals ∪ Subg(G)
Plan′ = Plan ∪ Pplan(G)
TCS′ = TCS ∪ T c

where the sets Subg(G), Pplan(G) and T c are obtained as follows.

(i) if G is a mental goal: let 〈KB, Goals, P lan, TCS〉, G |=τ
plan X. Then,

either X = ⊥ and Subg(G) = Pplan(G) = T c = {},
or X = (As,Gs, T c) and Subg(G) = {〈l[t], G〉 | l[t] ∈ Gs}, Pplan(G) =
{〈a[t], G, P 〉 | a[t] ∈ As and KB, a[t] |=pre P}.

360 A. Bracciali et al.

(ii) if G = 〈l[t], G′〉 is a sensing goal:
Subg(G) = {}, and
Pplan(G) = 〈sense(l[t′]), G′, C〉, where KBpre, sense(l[t′]) |=pre C, and
T c = {t′ ≤ t}.

Computational Counterpart of PI: 0τ
PI consists of two components, dealing sep-

arately with mental and sensing goals. Below, given a partial plan X returned
by 0τ

plan, we write G(X) (respectively A(X), T (X)), meaning {} if X = ⊥, and
Gs (respectively As, T c) if X = (As, Gs, T c).

G = 〈l[t], 〉 mental goal
〈KB, Goals, P lan, TCS〉, G 0τ

plan X

Goals1 = Goals ∪G(X)
Plan1 = Plan ∪A(X)
TCS1 = TCS ∪ T (X)

〈KB, Goals, P lan, TCS〉, G 0τ
PI 〈KB, Goals1, P lan1, TCS1〉

(0τ
PI)

G = 〈l[t], G′〉 sensing goal
KBpre, sense(l[t′]) 0pre P
Plan1 = Plan ∪ {〈sense(l[t′]), G′, P 〉}
TCS1 = TCS ∪ {t′ ≤ t}

〈KB, Goals, P lan, TCS〉, G 0τ
PI 〈KB, Goals, P lan1, TCS1〉

(0τ
PI)

Clearly, if 0τ
plan is correct wrt |=τ

plan and 0pre is correct wrt |=pre, then the
computational counterpart 0PI is correct wrt PI. Thus, by theorem 2 (and the
analogous theorem for |=pre),

Theorem 6. (Plan Introduction Soundness) Given states S,S′, goal G, time-

point τ , if S, G 0τ
PI S′ then (PI)

S G

S′ τ .

Note that the PI transition (and its computational counterpart) relies upon
a given input goal to be planned for. Such an input is provided within the KGP
model via an appropriate selection function cGS , defined in terms of capabili-
ties and the constraint satisfaction |=�. Similarly, the KGP model relies upon
selection functions for action selection (to provide inputs to the AE transition),
precondition selection (to provide inputs to the SI transition), and fluent selec-
tion (to provide inputs to the AOI transition). In the next section, we will see
that these selection functions play another important role, of “enabling” transi-
tions within cycles. In [5], we provide computational counterparts for all these
selection functions, in terms of the computational counterparts of the various
capabilities and the constraint satisfaction used therein.

5 Computational Model for Cycle

The role of the cycle theory is to dynamically control the sequence of the inter-
nal transitions that the agent applies in its “life”. It regulates these “narratives

The KGP Model of Agency for Global Computing 361

of transitions” according to certain requirements that the designer of the agent
would like to impose on the operation of the agent, but still allowing the pos-
sibility that any (or a number of) sequences of transitions can actually apply
in the “life” of an agent. Thus, whereas a fixed cycle can be seen as a restric-
tive and rather inflexible catalogue of allowed sequences of transitions (possibly
under pre-defined conditions), a cycle theory identifies preferred patterns of se-
quences of transitions. In this way a cycle theory regulates in a flexible way the
operational behaviour of the agent.

Cycle theory. Formally, a cycle theory Tcycle consists of the following parts:

– An initial part Tinitial, that determines the possible transitions that the agent
could perform when it starts to operate (initial cycle step). More concretely,
Tinitial consists of rules of the form

R0|T (S0, X): ∗T (S0, X) ← C(S0, τ, X), now(τ)

with name R0|T (S0, X), and sanctioning that, if the conditions C are satis-
fied in the initial state S0 at the current time τ , then the initial transition
should be T , applied to state S0 and input X, if required. Note that the
conditions C determine the input X of the first transition T . Such inputs
are determined by calls to the appropriate selection functions (see section 4).
Note also that C(S0, τ, X) may be true, and Tinitial might simply indicate
a fixed initial transition T1.

The notation ∗T (S, X) in the head of these rules, meaning that the tran-
sition T can be potentially chosen as the next transition, is used in order
to avoid confusion with the notation T (S, X,S′, τ) that we have introduced
earlier to represent the actual application of the transition T .

– A basic part Tbasic that determines the transitions (cycle steps) that may
follow other transitions, and consists of rules of the form

RT |T ′(S′, X ′): ∗T ′(S′, X ′) ← T (S, X,S′, τ), EC(S′, τ ′, X ′), now(τ ′)
with name RT |T ′(S′, X ′), and sanctioning that, after the transition T has
been executed, starting at time τ in the state S and ending at the current
time τ ′ in the resulting state S′, and the conditions EC evaluated in S′

at τ ′ are satisfied, then transition T ′ could be the next transition to be
applied in the state S′ with the (possibly empty) input X ′, if required.
The conditions EC are called enabling conditions as they determine when
a cycle-step from the transition T to the transition T ′ can be applied. In
addition, they determine the input X ′ of the next transition T ′. Such inputs
are determined by calls to the appropriate selection functions.

– A behaviour part Tbehaviour that contains rules describing dynamic priorities
amongst rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S, X ′) 1RT |T ′′(S, X ′′)←BC(S, X ′, X ′′, τ), now(τ)

with T ′ �= T ′′, which we refer to via the name PT
T ′�T ′′ . Recall that RT |T ′(·)

andRT |T ′′(·) are (names of) rules in Tbasic∪Tinitial. Note that, with an abuse
of notation, T could be 0 in the case that one such rule is used to specify

362 A. Bracciali et al.

a priority over the first transition to take place, in other words, when the
priority is over rules in Tinitial. These rules in Tbehaviour sanction that, at the
current time τ , after transition T , if the conditions BC hold, then we prefer
the next transition to be T ′ over T ′′, namely doing T ′ has higher priority
than doing T ′′, after T . The conditions BC are called behaviour conditions
and give the behavioural profile of the agent. These conditions depend on
the state of the agent after T and on the parameters chosen in the two cycle
steps represented by RT |T ′(S, X ′) and RT |T ′′(S, X ′′). Behaviour conditions
are heuristic conditions, which may be defined in terms of heuristic selection
functions (see [17] for details). For example, the heuristic action selection
function may choose those actions in the agent’s plan whose time is close to
running out amongst those whose time has not run out.

– An auxiliary part including definitions for any predicates occurring in the
enabling and behaviour conditions, and in particular for selection functions
(including the heuristic ones, if needed).

– An incompatibility part, including rules stating that all different transitions
are incompatible with each other:

incompatible(∗T (S, X), ∗T ′(S, X ′))

for all T, T ′ such that T �= T ′, and that different calls to the same transition
but with different input items are incompatible with each other:

incompatible(∗T (S, X), ∗T (S, X ′)) ← X �= X ′

Overall, these rules express that only one transition can be chosen at a time.

Hence, Tcycle is an LPP-theory (see Section 3.2) where:

(i) P = Tinitial ∪ Tbasic, and
(ii) H = Tbehaviour.

In the sequel, we will indicate with T 0
cycle the sub-cycle theory Tcycle \ Tbasic

and with T s
cycle the sub-cycle theory Tcycle \ Tinitial.

Operational Trace. A cycle theory Tcycle is used to induce cycle operational traces
of an agent, namely a (typically infinite) sequence of transitions

T1(S0, X1,S1, τ1), . . . , Ti(Si−1, Xi,Si, τi), Ti+1(Si, Xi+1,Si+1, τi+1), . . .

(where each of the Xi may be empty), such that

– S0 is the given initial state;
– for each i ≥ 1, τi is given by the clock of the system, such that τi < τi+i;
– (Initial Cycle Step) T 0

cycle ∧ now(τ1) |=pr ∗T1(S0, X1);
– (Cycle Step) for each i ≥ 1
T s

cycle ∧ Ti(Si−1, Xi,Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)
namely each (non-final) transition in a sequence is followed by the most
preferred transition, as specified by T s

cycle. If the most preferred transition
determined by |=pr is not unique, we choose arbitrarily one.

The KGP Model of Agency for Global Computing 363

Computational Counterpart of Operational Trace. Since the notion of opera-
tional trace is based upon |=pr and transitions (and selection functions), its
computational counterpart is obtained by replacing |=pr with its computational
counterpart 0pr and transitions with their computational counterparts. Thus,
a computational operational trace is a (possibly infinite) sequence of computa-
tional counterparts of transitions, of the form

T c
1 (S0, X1,S1, τ1), . . . , T c

i (Si−1, Xi,Si, τi), T c
i+1(Si, Xi+1,Si+1, τi+1), . . .

where

– T 0
cycle ∧ now(τ1) 0pr ∗T1(S0, X1) and,

– for each i ≥ 1, T s
cycle ∧ T i(Si−1, Xi,Si, τi) ∧ now(τi+1) 0pr∗Ti+1(Si, Xi+1).

Trivially, computational counterparts of operational traces correspond to op-
erational traces, thanks to the soundness results for each transition (similarly to
theorem 6) and the soundness of |=pr (see theorem 4).

6 Implementation

To realise the logical and computational aspects of the KGP model we have de-
veloped PROSOCS [36], a platform which allows us to deploy and test the func-
tionality of KGP agents via the SOCSiC component of PROSOCS. Deployment
of KGP agents using SOCSiC is based on an agent template whose design [35]
builds upon previous work in multi–agent systems, in particular, the head/body
metaphor described by [37] and [14], and the mind/body architecture introduced
by [3] and more recently used by [15].

In the mind part of a PROSOCS agent, the ALP-based components of the
KGP model are implemented in CIFF [11, 12] and the LPP-based components of
the KGP model are implemented in GORGIAS [1]. Overall, we build the mind
using SICStus Prolog [34] and the bidirectional Java-Prolog interface Jasper it
provides; Jasper is used by the body to exchange information with the mind.

To implement the body of the agent we use Java on top of the Peer-to-
Peer JXTA Project [39]. JXTA is suitable for the low-level functionality of a
PROSOCS agent, such as interaction with the environment, and is provided in
the form of an API (Application Programming Interface). By importing this
API when we instantiate specific PROSOCS agents, we enable such agents to
discover bodies of other PROSOCS agents (using JXTA’s peer discovery proto-
cols facilities for dynamic discovery in a GC network) as well as communicate
with other agents (using JXTA’s facilities for message transport and structuring
via a pipe binding and resolver protocols).

To facilitate experimentation with KGP agents we have built interfaces, which
allow us to animate an agent’s behaviour while interacting with other agents in
the context of a GC application. The aspects of the agent’s behaviour that we
animate, in the current state of the implementation, are: the computational trace
in terms of the names of transitions being executed, the observations the agent

364 A. Bracciali et al.

makes and the actions it executes, the internal state of the agent in terms of
its knowledge, goals and plans. More details of the implementation of the agent
template can be found in [2, 36].

7 Conclusions

In this paper we have summarised the declarative model of the KGP agents [18]
and then given its computational counterpart and briefly described its imple-
mentation. The declarative model is based on computational logic, in particular
on abductive logic programming and logic programming with priorities. It is
modular, hierarchical and extensible. It specifies a collection of capabilities, uses
them to define a collection of transitions, to be used within logically specified
context sensitive cycle theories. In close relationship to the declarative model,
the computational model mirrors the logical architecture by specifying appro-
priate computational counterparts for the capabilities and using these to give
the computational models of the transitions. These computational models and
the one specified for the cycle theories are all based on, and are significant ex-
tensions of, existing proof procedures for abductive logic programming and logic
programming with priorities. This design has satisfied two of the main moti-
vations of the KGP model, namely to reduce the gap between the logical and
computational realisations, and to exploit and integrate (extensions of) existing
computational logic tools and techniques.

The paper also reports a first prototype implementation of the KGP model
based on SICStus Prolog, Java and JXTA [36]. The implementation reflects the
modular and hierarchical architecture and is similarly extensible. The prototype
has been used successfully on a number of small scenaria demonstrating, amongst
others, the situatedness of agents and their adaptability and responsiveness to
changes in their environment, as required by the GC challenge.

The KGP model does not currently include a number of features, some of
which are subject of future work. It would be advantageous, for example, to
include a more sophisticated way to assimilate and revise knowledge, for ex-
ample using inductive logic programming. Another useful feature would be to
allow agents to have in their knowledge, and to reason with, what they believe
other agents believe. Such knowledge can be used, for example, in communica-
tion strategies and even possibly in planning. A particular issue included in the
GC vision and not addressed in the KGP model to date is physical mobility,
although we do cater, at the knowledge level, for agents moving from one so-
ciety to another [38]. This issue will necessitate further work. Finally, we are
currently working on identifying and verifying formally properties of behaviour
of computees.

Acknowledgements

This work was funded by the IST programme of the EC, FET under the IST-
2001-32530 SOCS project, within the GC proactive initiative. K. Stathis and F.
Toni were also supported by the Italian MIUR programme “Rientro dei Cervelli”.

The KGP Model of Agency for Global Computing 365

References

1. Gorgias User Guide: http://www.cs.ucy.ac.cy/~nkd/gorgias/, 2003.
2. M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis,

and P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003.
Deliverable D9.

3. J. Bell. A Planning Theory of Practical Rationality. In Proceedings of AAAI’95
Fall Symposium on Rational Agency, pages 1–4. AAAI Press, 1995.

4. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

5. A. Bracciali, N. Demetriou, U. Endriss, M. Gavanelli, A. C. Kakas, E. Lamma,
P. Mancarella, P. Mello, P. Moraitis, F. Sadri, K. Stathis, G. Terreni, F. Toni,
and P. Torroni. Computational model for computees and societies of computees.
Technical report, SOCS Consortium, 2003. Deliverable D8.

6. A. Bracciali and A. Kakas. Frame consistency: Reasoning with explanations. In
Proceedings of the 10th International Workshop on “Non-Monotonic Reasoning”
(NMR2004), Whistler BC, Canada, 2004.

7. F. Chesani, M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The
SOCS computational logic approach to the specification and verification of agent
societies. 2004. This volume.

8. K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, 1978.

9. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In
Logic Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, pages 369–384, 1995.

10. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77:321–357, 1995.

11. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof pro-
cedure for abductive logic programming with constraints. In Proceedings JELIA04.
To appear.

12. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic pro-
gramming with CIFF: implementation and applications. In Proceedings CILC2004,
Convegno Italiano di Logica Computazionale, 2004.

13. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, Nov. 1997.

14. H. Haugeneder, D. Steiner, and F. McCabe. IMAGINE: A framework for building
multi-agent systems. In S. M. Deen, editor, Proceedings of the 1994 International
Working Conference on Cooperating Knowledge Based Systems (CKBS-94), pages
31–64, DAKE Centre, University of Keele, UK, 1994.

15. Z. Huang, A. Eliens, , and P. de Bra. An Architecture for Web Agents. In Pro-
ceedings of EUROMEDIA’01. SCS, 2001.

16. J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20:503–582, 1994.

17. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach
to model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

18. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In Proceedings ECAI2004, 2004. To appear.

366 A. Bracciali et al.

19. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324.
Oxford University Press, 1998.

20. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, pages 504–519, 1994.

21. A. C. Kakas and R. Miller. A simple declarative language for describing narratives
with ations. Logic Programming, 31, 1997.

22. A. C. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo, editors, Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), pages 883–890, Mel-
bourne, Victoria, 2003. ACM Press.

23. A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal
of Logic and Computation, 9:515–562, 1999.

24. A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving
through abduction. In B. Nebel, editor, Proceedings of the 17th International
Joint Conference on Artificial Intelligence, pages 591–596, Seattle, Washington,
USA, August 2001. Morgan Kaufmann Publishers.

25. R. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law
Journal, Special Issue on Logical Models of Argumentation, 4(3-4):275–296, 1996.
Kluwer Academic Publishers.

26. R. A. Kowalski. Logic for Problem Solving. North-Holland, 1979.
27. R. A. Kowalski. Problems and promises of computational logic. In Proceedings of

the Symposium on Computational Logic, pages 1–36. Springer-Verlag, 1990.
28. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation

Computing, 4(1):67–95, 1986.
29. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended

edition, 1987.
30. H. Prakken and G. Sartor. A System for Defeasible Argumentation, with Defeasible

Priorities, pages 510–524. 1996.
31. H. Prakken and G. Sartor. Argument-based extended logic programming with

defeasible priorities. Journal of Applied Non-Classical Logics, 7(1), 1997.
32. M. Shanahan. Prediction is deduction but explanation is abduction. In Proceedings

of the 11th International Joint Conference on Artificial Intelligence, pages 1055–
1060, 1989.

33. M. Shanahan. Solving the Frame Problem. MIT Press, 1997.
34. SICStus Prolog user manual, release 3.8.4, 2000. Swedish Institute of Computer

Science.
35. K. Stathis, C. Child, W. Lu, and G. K. Lekeas. Agents and Environments. Tech-

nical report, SOCS Consortium, 2002. IST32530/CITY/005/DN/I/a1.
36. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.

PROSOCS: a platform for programming software agents in computational logic. In
J. Müller and P. Petta, editors, Proceedings of From Agent Theory to Agent Imple-
mentation (AT2AI-4 – EMCSR’2004 Session M), pages 523–528, Vienna, Austria,
2004.

37. D. E. Steiner, H. Haugeneder, and D. Mahling. Collaboration of knowledge bases
via knowledge based collaboration. In S. M. Deen, editor, CKBS-90 — Proceed-
ings of the International Working Conference on Cooperating Knowledge Based
Systems, pages 113–133. Springer Verlag, 1991.

The KGP Model of Agency for Global Computing 367

38. F. Toni and K. Stathis. Access-as-you-need: a computational logic framework for
flexible resource access in artificial societies. In Proceedings of the Third Interna-
tional Workshop on Engineering Societies in the Agents World (ESAW’02), volume
2577 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

39. B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C. Hugly, and E. Pouyoul.
Project JXTA-C: Enabling a web of things. In Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS’03), pages 282–287. IEEE
Press, 2003.

Author Index

Alberti, Marco 314
Aldini, Alessandro 77
Aurell, Erik 266

Baldan, Paolo 1, 18
Baumeister, Hubert 34
Bettini, Lorenzo 179
Borgström, Johannes 250
Boudol, Gérard 208
Bracciali, Andrea 1, 340
Brahami, M. 273
Bruni, Roberto 1
Buchholtz, Mikael 93

Chesani, Federico 314
Corradini, Andrea 18

Demetriou, N. 340
De Nicola, Rocco 179

El-Ansary, Samesh 266
Endriss, U. 340
English, C. 291
Eugster, P.Th. 273

Falassi, Daniele 179

Gadducci, Fabio 18
Gavanelli, Marco 314
Ghodsi, Ali 223
Gorrieri, Roberto 77
Guerraoui, R. 273
Gurov, Dilian 250

Handurukande, S.B. 273
Haridi, Seif 223

Kakas, A. 340

Lacoste, Marc 179
Lamma, Evelina 314
Latella, Diego 34
Lopes, Lúıs 179
Lu, W. 340

Mancarella, P. 340
Massink, Mieke 34
Mello, Paolla 314
Montangero, Carlo 93

Nestmann, Uwe 250
Nikoletseas, Sotiris 127
Nixon, P. 291

Oliveira, Lićınio 179
Onana Alima, Luc 223
Onana, Luc 250

Panayiotou, Christoforos 59
Paulino, Hervé 179
Perrone, Lara 93
Pitoura, Evaggelia 59
Pokozy-Korenblat, Katerina 107
Priami, Corrado 107

Quaglia, Paola 107

Sadri, F. 340
Samaras, George 59
Schmitt, Alan 146
Semprini, Simone 93
Skouteli, Chara 59
Spirakis, Paul 127
Stathis, K. 340
Stefani, Jean-Bernard 146

Terreni, G. 340
Terzis, S. 291
Toni, F. 340
Torroni, Paolo 314
Troina, Angelo 77

Vasconcelos, Vasco T. 179

Wagealla, W. 291
Wirsing, Martin 34

	Frontmatter
	Symbolic Equivalences for Open Systems
	Specifying and Verifying UML Activity Diagrams Via Graph Transformation
	Mobile UML Statecharts with Localities
	Communities: Concept-Based Querying for Mobile Services
	Towards a Formal Treatment of Secrecy Against Computational Adversaries
	For-LySa: UML for Authentication Analysis
	Performance Analysis of a UML Micro-business Case Study
	Efficient Information Propagation Algorithms in Smart Dust and NanoPeer Networks
	The Kell Calculus: A Family of Higher-Order Distributed Process Calculi
	A Software Framework for Rapid Prototyping of Run-Time Systems for Mobile Calculi
	A Generic Membrane Model (Note)
	A Framework for Structured Peer-to-Peer Overlay Networks
	Verifying a Structured Peer-to-Peer Overlay Network: The Static Case
	A Physics-Style Approach to Scalability of Distributed systems
	BGP-Based Clustering for Scalable and Reliable Gossip Broadcast
	Trust Lifecycle Management in a Global Computing Environment
	The SOCS Computational Logic Approach to the Specification and Verification of Agent Societies
	The KGP Model of Agency for Global Computing: Computational Model and Prototype Implementation
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

